Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T03:10:08.418Z Has data issue: false hasContentIssue false

Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig

Published online by Cambridge University Press:  09 March 2007

A. Rérat
Affiliation:
Département de Nutrition, Alimentation et Sécurité Alimentaire, CRJ-INRA, Jouy-en-Josas 78350, France
C. Simoes-Nuñes
Affiliation:
Département de Nutrition, Alimentation et Sécurité Alimentaire, CRJ-INRA, Jouy-en-Josas 78350, France
F. Mendy
Affiliation:
Département de Nutrition, Alimentation et Sécurité Alimentaire, CRJ-INRA, Jouy-en-Josas 78350, France
P. Vaissade
Affiliation:
Département de Nutrition, Alimentation et Sécurité Alimentaire, CRJ-INRA, Jouy-en-Josas 78350, France
P. Vaugelade
Affiliation:
Département de Nutrition, Alimentation et Sécurité Alimentaire, CRJ-INRA, Jouy-en-Josas 78350, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Seven non-anaesthetized pigs (mean body-weight 64.6 kg) were used to study the intestinal absorption and hepatic metabolism of glucose and amino acids (AA) using carbohydrate solutions (maltose dextrin; 440 g/2 l), containing 110 g of either an enzymic milk-protein hydrolysate (PEP) with a large percentage of small peptides (about 50% with less than five AA residues) and very few free AA (8%) or a mixture of free AA (AAL) with an identical pattern, infused intraduodenally. Each pig was previously fitted under anaesthesia with electromagnetic flow probes around the portal vein and the hepatic artery, and with permanent catheters in the portal vein, carotid artery, one hepatic vein and the duodenum. Each solution was infused for 1 h after a fasting period (18 h) and each pig received both solutions at 8 d intervals. The observation period lasted 8 h. For most AA (his, lys, phe, thr, arg, tyr, pro) the absorption rate after infusion of PEP was significantly higher than after that of AAL during the 1st hour, but the differences quickly disappeared. After 8 h, the only differences concerned his and tyr (PEP > AAL) and met, glu and asp (AAL > PEP). There was a large uptake of blood AA by gut-wall cells, higher after AAL infusion than after PEP infusion, particularly for branched-chain AA (BCAA). The absorption of ammonia-nitrogen after both infusions was equivalent to two-thirds of urea-N passing from blood to intestinal tissues and lumen. Glucose absorbed within 8 h represented only 76% (PEP) or 69% (AAL) of the infused amounts. The cumulative hepatic total AA (TAA) uptake increased from 13 to 27% of the infused amounts between the 1st and the 8th hour after PEP infusion, and from 8 to 31% after AAL infusion. Most essential AA were largely taken up by the liver, with the exception of met (PEP) and thr and of BCAA, which were poorly retained for both solutions; there was a high uptake of ala and gly, and a release of asp, glu, and gln. Urea-N released by the liver within 8 h was equivalent to 23–25% absorbed amino-N and to around 1.5 times ammonia-N taken up by the liver within 8 h. Glucose was highly taken up by the liver during the first hours then released, the total uptake within 8 h representing about half the absorbed amount. There was a lactate release tending to be higher after PEP than after AAL infusion and a liver pyruvate release identical for both solutions. From calculations of net non-catabolic metabolism in the liver the possible synthesis of liver proteins within 8 h may be estimated at 35 g for both solutions. The cumulative peripheral TAA uptake increased from 12 to 27% of the infused amounts between the 1st and 8th hour after PEP and from 9 to 11% after AAL infusion. At 8 h after the infusion the larger uptake concerned BCAA, arg, glu and asp and there was a marked release of gln, gly and ala for both solutions; the peripheral balance was zero for met (PEP) or characterized by a release of phe and thr (AAL). Thus, protein synthesis seemed only to be possible with the aid of plasma proteins synthesized in the liver. The 8 h peripheral balance of glucose, lactate and pyruvate was characterized by the same level of uptake for both solutions. The time-course of AA absorption, depending on the physicochemical structure of nitrogenous mixtures present in the digestive tract, had an influence on the pattern of liver and peripheral AA uptake.

Type
Amino Acid Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Abumrad, N. N., Rabin, D. B., Wise, K. L. & Lacy, W. W. (1982). The disposal of intravenous administered aminoacid load across the human forearm. Metabolism, Clinical and Experimental 31, 463470.CrossRefGoogle ScholarPubMed
Abumrad, N. N., Williams, P., Frexes-Steed, M., Geer, R., Flakoll, P., Cercosimo, E., Brown, L. L., Melki, I., Bulus, N., Hourani, H., Hubbard, M. & Ghishan, F. (1989). Inter-organ metabolism of aminoacids in vivo. Diabetes/Metabolism Reviews 5, 213226.CrossRefGoogle ScholarPubMed
Adibi, S. A. & Mercer, D. W. (1973). Protein digestion in human intestine as reflected in luminal mucosal and plasma aminoacid concentrations after meals. Journal of Clinical Investigation 52, 15861594.CrossRefGoogle ScholarPubMed
Annegers, J. H. (1966). Some effects of hexoses on the absorption of amino acids. American Journal of Physiology 210, 701704.CrossRefGoogle ScholarPubMed
Aoki, T. T., Brennan, M. F., Muller, W. A., Soeldner, J. S., Alpert, J. S., Saltz, S. B., Kaufmann, R. L., Tan, M. H. & Cahill, G. F. Jr (1976). Amino acid levels across normal forearm muscle and splanchnic bed after a protein meal. American Journal of Clinical Nutrition 29, 340350.CrossRefGoogle ScholarPubMed
Barrett, E. J., Ferrannini, E., Gusberg, R., Bevilacqua, S. & De Fronzo, R. A. (1985). Hepatic and extrahepatic splanchnic glucose metabolism in the postabsorptive and glucose fed dog. Metabolism, Clinical and Experimental 34, 410420.CrossRefGoogle ScholarPubMed
Barrett, E. J., Gusberg, R., Ferrannini, E., Tepler, J., Felig, P., Jacob, R., Smith, D. & De Fronzo, R. A. (1986). Amino acid and glucose metabolism in the postabsorptive state and following amino acid ingestion in the dog. Metabolism, Clinical and Experimental 35, 709717.CrossRefGoogle ScholarPubMed
Block, R. J. & Mitchell, H. H. (1946). The correlation of the amino-acid composition of proteins with their nutritive value. Nutrition Abstracts and Reviews 16, 249278.Google Scholar
Bloomgarden, Z. T., Liljenquist, J., Lacy, W. & Rabin, D. (1981). Amino acid disposition by liver and gastrointestinal tract after protein and glucose ingestion. American Journal of Physiology 241, E90–E99.Google ScholarPubMed
Chang, T. W. & Goldberg, A. L. (1978). The metabolic fates of aminoacids and the formation of glutamine in the skeletal muscle. Journal of Biological Chemistry 253, 36853693.CrossRefGoogle Scholar
Cherry, I. S. & Crandall, L. A. (1937). The response of the liver to the oral administration of glucose. American Journal of Physiology 120, 5258.CrossRefGoogle Scholar
Chez, R. A., Schultz, S. G. & Curran, P. F. (1966). Effect of sugars on transport of alanine in intestine. Science 153, 10121013.CrossRefGoogle ScholarPubMed
Cook, G. C. (1971). Impairment of glycine absorption by glucose and galactose in man. Journal of Physiology 217, 6170.CrossRefGoogle ScholarPubMed
Cook, G. C. (1972 a). Intestinal absorption of l-methionine in man and the effect of glucose in the perfusing fluid. Journal of Physiology 221, 707714.CrossRefGoogle ScholarPubMed
Cook, G. C. (1972 b). Comparison of intestinal absorption rates of glycine and glycylglycine in man and the effect of glucose in the perfusing fluid. Clinical Science 43, 443453.CrossRefGoogle ScholarPubMed
Dropsy, G. & Boy, J. (1961). Détermination de l'ammoniémie (méthode automatique par dialyse) (Determination of the blood level of ammonia (automatic dialysis method)). Annales de Biologie Clinique 19, 313318.Google Scholar
Elia, M., Folmer, P., Schlatmann, S., Goren, A. & Austin, S. (1988). Carbohydrate, fat and protein metabolism in muscle and in the whole body after mixed meal ingestion. Metabolism, Clinical and Experimental 37, 542551.CrossRefGoogle ScholarPubMed
Elwyn, D. H. (1970). The role of the liver in regulation of aminoacid and protein metabolism. In Mammalian Protein Metabolism, vol. 4, pp. 523557 [Munro, H. N., editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). Aminoacid movements between gut, liver and periphery in unanesthetized dogs. American Journal of Physiology 215, 12601275.CrossRefGoogle ScholarPubMed
Ewe, K. & Summerskill, W. H. J. (1965). Transfer of ammonia in the human jejunum. Journal of Laboratory and Clinical Medicine 65, 839847.Google ScholarPubMed
Fauconneau, G. & Michel, M. C. (1970). The role of the gastrointestinal tract in the regulation of protein metabolism. In Mammalian Protein Metabolism, vol. 4, pp. 481522 [Munro, H. N., editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Felig, P. (1973). The glucose-alanine cycle. Metabolism, Clinical and Experimental 22, 179207.CrossRefGoogle ScholarPubMed
Felig, P. (1975). Aminoacid metabolism in man. Annual Review of Biochemistry 44, 933955.CrossRefGoogle ScholarPubMed
Ferrannini, E., De Fronzo, R. A., Gusberg, R., Tepler, J., Jacob, R., Aaron, M., Smith, D. & Barrett, E. J. (1988). Splanchnic aminoacid and glucose metabolism during aminoacid infusion in dogs. Diabetes 37, 227245.CrossRefGoogle ScholarPubMed
Galim, E. B., Hruska, K., Bier, D. M., Matthews, D. E. & Haymond, M. W. (1980). Branched chain amino acid nitrogen transfer to alanine in dogs: direct isotopic determination with [15N]leucine. Journal of Clinical Investigation 66, 12951304.CrossRefGoogle ScholarPubMed
Garber, A. J., Karl, I. E. & Kipnis, D. M. (1976). Alanine and glutamine synthesis and release from skeletal muscle. Journal of Biological Chemistry 251, 826835.CrossRefGoogle ScholarPubMed
Gelfand, R. A., Glickman, M. G., Jacob, R., Sherwin, R. S. & De Fronzo, R. A. (1986). Removal of infused aminoacids by splanchnic and leg tissues in humans. American Journal of Physiology 250, E407–E413.Google ScholarPubMed
Gibson, J. A., Park, N. J., Sladen, J. E. & Dawson, A. M. (1976). The role of the colon in urea metabolism in man. Clinical Science and Molecular Medicine 50, 5159.Google Scholar
Goldberg, A. L. & Chang, T. W. (1978). Regulation and significance of amino acid metabolism in skeletal muscle. Federation Proceedings 37, 23012307.Google ScholarPubMed
Golden, M. H. N. (1981). Metabolism of branched chain amino acids. In Nitrogen Metabolism in Man, pp. 109110 [Waterlow, J. C. and Stephen, J. M. L., editors]. London: Applied Science Publishers.Google Scholar
Grimble, G. K., Keohane, P. P., Higgins, B. E., Kaminski, M. V. & Silk, D. B. A. (1986). Effect of peptide chain length on aminoacid and nitrogen absorption with two lactalbumin hydrolysates in the normal human jejunum. Clinical Science 71, 6569.CrossRefGoogle ScholarPubMed
Harper, A. E., Miller, R. H. & Block, K. P. (1984). Branched chain amino acid metabolism. Annual Review of Nutrition 4, 409454.CrossRefGoogle ScholarPubMed
Haymond, M. W. & Miles, J. M. (1982). Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes 31, 8689.CrossRefGoogle Scholar
Hellerstein, M. K. & Munro, H. N. (1988). Interaction of liver and muscle in the regulation of metabolism in response to nutritional and other factors. In The Liver Biology and Pathohiology, 2nd ed., pp. 965983 [Arias, I. M., Jacoby, W. B.Popper, H.Schachter, D. and Shafritz, D. A., editors]. New York: Raven Press.Google Scholar
Hill, J. B. & Kessler, G. (1961). An automated determination of glucose utilizing a glucose oxidase-peroxidase system. Journal of Laboratory and Clinical Medicine 57, 970980.Google ScholarPubMed
Hindmarsh, J. F., Kilby, D. & Wiseman, G. (1966). Effect of aminoacids on sugar absorption. Journal of Physiology 186, 166174.CrossRefGoogle ScholarPubMed
Jackson, R. A., Hamling, J. B., Sim, B. M., Hawa, M. I., Blix, P. M. & Nabarro, J. D. N. (1987). Peripheral lactate and oxygen metabolism in man: the influence of oral glucose loading. Metabolism, Clinical and Experimental 36, 144150.CrossRefGoogle ScholarPubMed
Jahoor, F. (1981). Ammonia metabolism in vivo in the rat. In Nitrogen Metabolism in Man, pp. 193195 [Waterlow, J. C. and Stephen, J. M. L., editors]. London: Applied Science Publishers.Google Scholar
Kaplan, J. H. & Pitot, H. C. (1970). The regulation of intermediary amino acid metabolism in animal tissues. In Mammalian Protein Metabolism, vol. 4, pp. 387443 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Kelley, D., Mitrakou, A., Marsh, H., Schwenk, F., Benn, J., Sonnenberg, G., Arcangeli, M., Aoki, T., Sorensen, J., Berger, M., Sonksen, P. & Gerich, J. (1988). Skeletal muscle glycolysis, oxidation and storage of an oral glucose load. Journal of Clinical Investigation 81, 15631571.CrossRefGoogle ScholarPubMed
Kim, Y. S., Kim, Y. W. & Sleisinger, M. H. (1974). Specificities of peptide hydrolases in brush-border and cytosal fractions of rat small intestine. Biochimica et Biophysica Acta 370, 283296.CrossRefGoogle Scholar
Krebs, H. A. & Lund, P. (1977). Aspects of the regulation of the metabolism of branched-chain amino acids. Advances in Enzyme Regulation 15, 375394.CrossRefGoogle Scholar
Livesey, G. & Lund, P. (1980). Enzymic determination of branched chain amino acids and 2-oxoacids in rat tissue. Biochemical Journal 188, 705713.CrossRefGoogle Scholar
McFarlane, A. S. (1964). Metabolism of plasma proteins. In Mammalian Protein Metabolism, vol. 1, pp. 297341 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
McFarlane-Anderson, N., Bennett, F. I. & Alleyne, G. A. O. (1976). Ammonia production by the small intestine of the rat. Biochimica et Biophysica Acta 437, 238243.CrossRefGoogle ScholarPubMed
McMenamy, R. H., Shoemaker, W. C., Richmond, J. E. & Elwyn, D. H. (1962). Uptake and metabolism of amino acids by the dog liver perfused in situ. American Journal of Physiology 202, 407414.CrossRefGoogle Scholar
Madison, L. L., Combes, B., Adams, R. & Strickland, W. (1960). The physiological significance of the secretion of endogenous insulin into the portal circulation. III. Evidence of a direct immediate effect of insulin on the balance of glucose across the liver. Journal of Clinical Investigation 39, 507522.CrossRefGoogle ScholarPubMed
Mallette, L. E., Exton, J. H. & Park, C. R. (1969). Control of gluconeogenesis from amino acids in the perfused rat liver. Journal of Biological Chemistry 244, 57135723.CrossRefGoogle Scholar
Mather, A. & Roland, D. (1969). The automated thiosemicarbazide-diacetyl monoxime method for plasma urea. Clinical Chemistry 15, 393396.CrossRefGoogle ScholarPubMed
Matthews, D. M. (1975). Intestinal absorption of peptides. Physiological Reviews 55, 537608.CrossRefGoogle ScholarPubMed
Miller, L. L. (1962). The role of the liver and the non-hepatic tissues in the regulation of free amino acid levels in the blood. In Amino Acid Pools, pp. 708738 [Holden, J. T., editor]. Amsterdam: Elsevier.Google Scholar
Minaire, Y., Forichon, J. & Studievic, C. (1966). Dosage fluorométrique enzymatique de l'acide pyruvique par l'autoanalyzer (Fluorometric enzymic titration of pyruvic acid by the autoanalyser). In Automation in Analytical Chemistry, Technicon Symposium, vol. 2, pp. 145150. White Plains, N.Y.: Mediad Inc.Google Scholar
Minaire, Y., Foucherand, F. & Studievic, C. (1965). Adaptation du dosage de l'acide lactique par voie enzymatique à l'autoanalyzer (Adaptation of the enzymic titration of lactic acid for the autoanalyser). IV. Technicon International Symposium, Paris, Domont: Compagnie Technicon, France.Google Scholar
Munck, B. G. (1981). Intestinal absorption of amino acids. In Physiology of the Gastrointestinal Tract, vol. 2, pp. 10971122 [Johnson, L. R., editor]. New York: Raven Press.Google Scholar
Munro, H. N. & Fleck, A. (1969). Analysis of tissues and body fluids for nitogenous constituents. In Mammalian Protein Metabolism, vol. 3, pp. 423525 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle ScholarPubMed
Newey, H. & Smyth, D. H. (1964). Effect of sugars on intestinal transfer of aminoacids. Nature 202, 400401.CrossRefGoogle ScholarPubMed
Owen, E. E. & Robinson, R. R. (1963). Amino acid extraction and ammonia metabolism in the human kidney during the prolonged administration of ammonium chloride. Journal of Clinical Investigation 42, 263276.CrossRefGoogle ScholarPubMed
Pion, R. & Fauconneau, G. (1968). Les ressources mondiales actuelles et futures en protéines disponibles pour l'alimentation de l'homme. Leurs possibilités d'utilisation (Present and future world resources of proteins available for human nutrition. Their potential for use). Isotope Studies on the Nitrogen Chain. SM-97/ 42, 359. Vienna: International Atomic Energy Agency.Google Scholar
Pion, R., Fauconneau, G. & Rérat, A. (1964). Variations de la composition en acides aminés du sang porte au cours de la digestion chez le porc (Variations of the amino acid composition of the portal blood during digestion in the pig). Annales de Biologie animale Biochimie Biophysique 4, 383401.CrossRefGoogle Scholar
Powers-Lee, S. G. & Meister, A. (1988). Urea synthesis and ammonia metabolism. In The Liver Biology and Pathobiology, pp. 317329 [Arias, I. M.Jacoby, W. P.Popper, H.Schachter, D. and Shafritz, D. A., editors]. New York: Raven Press.Google Scholar
Rérat, A. (1971). Mise au point d'une méthode quantitative d'étude de l'absorption chez le porc (Quantitative method for studying digestive absorption in the pig). Annales de Biologie animale Biochimie Biophysique 11, 277279.CrossRefGoogle Scholar
Rérat, A. (1981). Chronologie et bilans de l'absorption des sucres réducteurs et de l'azote aminé chez le porc selon la nature des aliments (Chronology and balance of reducing sugars and amino nitrogen absorption in the pig according to type of nutrient). Bulletin de l'Académie Nationale de Médicine 165, 11311137.Google Scholar
Rérat, A. (1986). Utilisation de l'azote des aliments produits par les biotechnologies: cinétique d'absorption, métabolisation et sécrétion d'hormones pancréatiques après perfusion duodénale d'hydrolysats de protéines laitières chez le porc éveillé (Use of the nitrogenous products obtained from biotechnology: absorption kinetics, metabolism and secretion of pancreatic hormones following duodenal infusion of milk protein hydrolysates in the conscious pig). In Food and Biotechnology, Proceedings of the International Symposium, pp. 215242 [de, J., la Noue Goulet, J. and Amiot, J., editors]. Québec: Université Laval.Google Scholar
Rérat, A. (1986). Mesure quantitative des échanges postprandiaux d'azote uréique et ammoniacal entre sang porte et tube digestif chez la porc éveillé (Quantitative postprandial exchanges of urea- and ammonia-nitrogen between the portal blood and the digestive tract in the conscious pig). Bulletin de l'Académie Nationale de Médecine 170, 4754.Google Scholar
Rérat, A. & Buraczewska, L. (1986). Postprandial quantitative kinetics of urea and ammonia nitrogen exchanges between the digestive tract and the portal blood in conscious pigs receiving a diet with or without urea. Archiv für Tierernährung 36, 252269.CrossRefGoogle ScholarPubMed
Rérat, A., Chayvialle, A., Kande, J., Vaissade, P., Vaugelade, P. & Bourrier, T. (1985). Metabolic and hormonal effects of test meals with various protein contents in pigs. Canadian Journal of Physiology and Pharmacology 63, 15471559.CrossRefGoogle ScholarPubMed
Rérat, A. & Henry, Y. (1964). Etude du besoin azoté chez le porc en croissance. I. Utilisation de la farine de poisson à trois taux différents (The protein requirements of the growing pig. I. The utilization of fish meal at three different levels). Annales de Zootechnie 13, 534.CrossRefGoogle Scholar
Rérat, A., Jung, J. & Kandé, J. (1988 a). Absorption kinetics of dietary hydrolysis products in conscious pigs given diets with different amounts of fish protein. 2. Individual amino acids. British Journal of Nutrition 60, 105120.CrossRefGoogle ScholarPubMed
Rérat, A. & Simoes-Nunes, C. (1988). Amino acid portal transport and hepatic metabolism after duodenal infusion of carbohydrate solutions containing small peptides or free amino acids in the non anaesthetized pig. In Abstract Book of 31st Meeting of the Canadian Society for Nutritional Sciences, Québec, Abstr. 65. Quebec: Université Laval.Google Scholar
Rérat, A., Simoes-Nunes, C., Mendy, F. & Roger, L. (1988 b). Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of milk enzymic hydrolysate or free amino acids. British Journal of Nutrition 60, 121136.CrossRefGoogle ScholarPubMed
Rérat, A., Simoes-Nunes, C., Vaissade, P. & Vaugelade, P. (1990). Absorption intestinale en présence de glucides des acides aminés provenant de solutions de petits peptides ou d'acides aminés libres infusés dans le duodénum chez le porc éveillé (Intestinal absorption of amino acids from solutions of small peptides or free amino acids infused into the duodenum of the conscious pig in the presence of carbohydrates). Reproduction Nutrition Developpement 30, 136.CrossRefGoogle Scholar
Rérat, A., Vaissade, P. & Vaugelade, P. (1984). Absorption kinetics of some carbohydrates in conscious pigs. 2. Quantitative aspects. British Journal of Nutrition 51, 517529.CrossRefGoogle ScholarPubMed
Rérat, A. & Vaugelade, P. (1983). Detitmétrie chronique de la veine porte chez le porc (Chronic determination of portal blood flow in the pig). Sciences et techniques des animaux de laboratoire 8, 239248.Google Scholar
Rérat, A. & Vaugelade, P. (1983). Detitmétrie chronique de la veine porte chez le porc (Chronic determination of critical examination). In Current Concepts of Digestion and Absorption in Pigs. Technical Bulletin no. 3, pp. 177216 [Low, A. G. and Partridge, I. G., editors]. Reading/Ayr: National Institute for Research in Dairying/Hannah Research Institute.Google Scholar
Salter, D. N. (1973). The influence of gut micro-organisms on utilization of dietary proteins. Proceedings of the Nutrition Society 32, 6571.CrossRefGoogle Scholar
Simoes-Nunes, C., Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989). Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports International 40, 901907.Google Scholar
Simoes-Nunes, C., Rérat, A., Vaugelade, P. & Vaissade, P. (1985). Etude simultanée des bilans d'absorption intestinale et de métabolisme hépatique chez le porc éveillé. Mise au point et intérêt de la technique (Simultaneous study of quantitative intestinal absorption and hepatic metabolism in the conscious pig: development of a technique). Diabète et Métabolisme 10, 349 Abstr.Google Scholar
Simoes-Nunes, C., Rérat, A., Vaugelade, P. & Vaissade, P. (1987). Qualitative and quantitative intestinal absorption and hepatic metabolism in conscious pigs. 1. Glucose and nitrogen. Proceedings of the Nutrition Society 46, 102A Abstr.Google Scholar
Sleisinger, M. H., Burston, D., Dalrymple, J. A., Wilkinson, S. & Matthews, D. M. (1976). Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology 71, 7681.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames: Iowa State University Press.Google Scholar
Snell, K. (1980). Muscle alanine synthesis and hepatic gluconeogenesis. Biochemical Society Transactions 8, 205213.CrossRefGoogle ScholarPubMed
Visek, W. J. (1972). Effects of urea hydrolysis on cell lifespan and metabolism. Federation Proceedings 31, 11781193.Google ScholarPubMed
Wahren, J., Felig, P. & Hagenfeldt, L. (1976). Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. Journal of Clinical Investigation 57, 987999.CrossRefGoogle ScholarPubMed
Welbourne, T., Weber, M. & Bank, N. (1972). The effect of glutamine administration on urinary ammonia excretion in normal subjects and patients with renal disease. Journal of Clinical Investigation 51, 18521860.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1974). Uptake and metabolism of plasma glutamine by the small intestine. Journal of Biological Chemistry 249, 50705079.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Archives of Biochemistry and Biophysics 171, 662672.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1976). Metabolism of absorbed aspartate, asparagine and arginine by rat small intestine in vivo. Archives of Biochemistry and Biophysics 175, 670676.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1978). Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. Journal of Biological Chemistry 253, 6976.CrossRefGoogle ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1980). Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Journal of Biological Chemistry 225, 107112.CrossRefGoogle Scholar
Wolff, J. E., Bergman, E. N. & Williams, H. H. (1972). Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep. American Journal of Physiology 223, 438446.CrossRefGoogle ScholarPubMed