Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T02:43:40.088Z Has data issue: false hasContentIssue false

Some observations on the possible nutritional significance of vitamin B12-and folate-binding proteins in milk. Absorption of [58Co] cyanocobalamin by suckling piglets

Published online by Cambridge University Press:  09 March 2007

J. E. Ford
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading RG2 9AT
K. J. Scott
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading RG2 9AT
B. F. Sansom
Affiliation:
Institute for Research on Animal Diseases, Compton, near Newbury, Berks.
P. J. Taylor
Affiliation:
Institute for Research on Animal Diseases, Compton, near Newbury, Berks.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study was made of the absorption of [58Co]cyanocobalamin in suckling piglets. Cyanocobalamin given at birth and at 7 d of age was efficiently absorbed from the intestine and retained within the body, mostly in the liver. A 10 μg test dose was absorbed no less efficiently than 0.5 μg, despite the virtual absence of intrinsic factor in the gut. In piglets given a 10 μg test dose at different ages between 0.5 and 56 d, there was a marked decrease in the efficiency of retention between about 7 and 21 d of age.

2. Vitamin B12-binding capacity in the gastric mucosa increased with age, from 40 ng at birth to about 2000 ng at 14 d and 7000 ng at 35 d. This binder-protein was largely endogenous, whereas much of the unsaturated binder-protein in intestinal mucosa was apparently derived from milk.

3. The chyme in the stomach and small intestine contained unsaturated binder-protein, partly endogenous and partly deriving from milk, which prevented uptake of added [G-3H]-cyanocobalamin into the ‘solids’ phase of the intestinal contents. The intestinal chyme contained large numbers (log10 7.0–9.1/ml) of bacteria, some of which were isolated and shown to take up cyanocobalamin or folic acid or both.

4. The findings are discussed in relation to the concept that for some days or weeks after the cessation of transport of intact protein across the neonatal gut epithelium (‘closure’), protein-bound vitamins may continue to be taken up into the epithelial cells and there released for transport into the circulation. It is concluded that unsaturated vitamin-binders may strongly influence the ecology of the intestinal microflora.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Andrews, P. (1964). Biochem. J. 91, 222.Google Scholar
Ardeman, S. & Chanarin, I. (1968). Lancet ii, 1350.Google Scholar
Auffray, P., Martinet, J. & Rérat, A. (1967). Annls Biol. anim. Biochim. Biophys. 7, 261.CrossRefGoogle Scholar
Barber, R. S., Braude, R. & Mitchell, K. G. (1955). J. agric. Sci., Camb. 46, 97.CrossRefGoogle Scholar
Becroft, D. M. O. & Holland, Y. T. (1966). N. Z. med. J. 65, 403.Google Scholar
Beer, R. J., Sansom, B. F. & Taylor, P. J. (1974). J. comp. Path. 84, 331.Google Scholar
Boass, A. & Hastings Wilson, T. (1963). Am. J. Physiol. 204, 101.CrossRefGoogle Scholar
Brambell, F. W. R. (1970). The Transmission of Passive Immunity from Mother to Young, p. 269. Amsterdam: North-Holland Publishing Co.Google Scholar
Braude, R., Coates, M. E., Henry, K. M., Kon, S. K., Rowland, S. J., Thompson, S. Y. & Walker, D. M. (1947). Br. J. Nutr. 1, 64.CrossRefGoogle Scholar
Bullen, C. L. & Willis, A. T. (1971). Br. med. J. iii, 338.CrossRefGoogle Scholar
Bullen, J. J., Rogers, H. J. & Leigh, L. (1972). Br. med. J. i, 69.CrossRefGoogle Scholar
Burger, R. L. & Allen, R. H. (1974). J. biol. Chem. 249, 7220.Google Scholar
Coates, M. E., Ford, J. E. & Harrison, G. F. (1968). Br. J. Nutr. 22, 493.CrossRefGoogle Scholar
de Man, J. C., Rogosa, M. & Sharpe, M. E. (1960). J. appl. Bact. 23, 130.CrossRefGoogle Scholar
Ford, J. E. (1974). Br. J. Nutr. 31, 243.CrossRefGoogle Scholar
Ford, J. E., Knaggs, G. S., Salter, D. N. & Scott, K. J. (1972). Br. J. Nutr. 27, 571.Google Scholar
Ford, J. E., Salter, D. N. & Scott, K. J. (1969). J. Dairy Res. 36, 435.CrossRefGoogle Scholar
Gallagher, N. D. (1969). Nature, Lond. 222, 877.CrossRefGoogle Scholar
Gallagher, N. D. & Foley, K. (1971). Gastroenterology 61, 332.Google Scholar
Gallagher, N. D. & Foley, K. (1972). Gastroenterology 62, 247.CrossRefGoogle Scholar
Ghitis, J. (1966). Am. J. clin. Nutr. 18, 452.CrossRefGoogle Scholar
Giannella, R. A., Broitman, S. A. & Zamcheck, N. (1971). J. clin. Invest. 50, 1100.Google Scholar
Giannella, R. A., Broitman, S. A. & Zamcheck, H. (1972). Gastroenterology 62, 255.CrossRefGoogle Scholar
Gregory, M. E. (1954). Br. J. Nutr. 8, 340.Google Scholar
Gregory, M. E., Ford, J. E. & Kon, S. K. (1952). Biochem. J. 51, xxix.Google Scholar
Gregory, M. E. & Holdsworth, E. S. (1955 a). Biochem. J. 59, 329.CrossRefGoogle Scholar
Gregory, M. E. & Holdsworth, E. S. (1955 b). Biochem. J. 59, 335.CrossRefGoogle Scholar
Haenel, H. (1970). Am. J. clin. Nutr. 23, 1433.CrossRefGoogle Scholar
Halliday, R. (1959). J. Endocr. 18, 56.CrossRefGoogle Scholar
Herbert, V. (1958). Proc. Soc. exp. Biol. Med. 97, 668.Google Scholar
Ifekwunigwe, A. & Jelliffe, D. B. (1974). Br. Med. J. i, 246.CrossRefGoogle Scholar
Jones, A. S. (1972). Proc. Br. Soc. Anim. Prod. p. 19.Google Scholar
Klipstein, F. A. & Lipton, S. D. (1970). Am. J. clin. Nutr. 23, 132.CrossRefGoogle Scholar
Koldovsky, O., Sunshine, P. & Kretchmer, N. (1966). Nature, Lond. 212, 1389.CrossRefGoogle Scholar
Lecce, J. G. (1973). J. Nutr. 103, 751.Google Scholar
Lecce, J. G. & Broughton, C. W. (1973). J. Nutr. 103, 744.CrossRefGoogle Scholar
Matoth, Y., Pinkas, A. & Sroka, Ch. (1965). Am. J. clin. Nutr. 16, 356.Google Scholar
Miller, H. T. & Luckey, T. D. (1963). J. Nutr. 80, 236.Google Scholar
Sansom, B. F., Taylor, P. J., Wheelock, D. & Vagg, M. J. (1971). Mineral Studies with Isotopes in Domestic Animals, p. 125. Vienna: International Atomic Energy Authority.Google Scholar
Schwartz, M. (1967). Scand. J. clin. Lab. Invest. 95, Suppl. 19.Google Scholar
Tyrode, M. V. (1910). Archs int. Pharmacodyn. The´r. 20, 205.Google Scholar
Wangel, A. G. & Callender, S. T. (1965). Proc. 10th Congr. Eur. Soc. Haemat., Strasbourg, part 2, p. 111.Google Scholar
Williams, D. L. & Spray, H. G. (1968). Br. J. Nutr. 22, 297.Google Scholar
Williams Smith, H. & Jones, J. E. T. (1963). J. Path. Bact. 86, 387.Google Scholar
Winberg, J. & Wessner, G. (1971). Lancet i, 1091.CrossRefGoogle Scholar