Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T22:57:48.210Z Has data issue: false hasContentIssue false

The simultaneous use of ribonucleic acid, 35S, 2,6-diaminopimelic acid and 2-aminoethylphosphonic acid as markers of microbial nitrogen entering the duodenum of sheep

Published online by Cambridge University Press:  24 July 2007

J. R. Ling
Affiliation:
Department of Applied Biochemistry and Nutrition, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, Leics. LE12 5RD
P. J. Buttery
Affiliation:
Department of Applied Biochemistry and Nutrition, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, Leics. LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Three sheep, each fitted with a ruminal cannula and duodenal re-entrant cannulas were given three isonitrogenous, isoenergetic diets in a Latin-Square design. Each diet contained (/kg) approximately 400 g N as white fish meal, soya-bean meal or urea and approximately 600 g dry matter (dm) was barley grain. The diets were fed continuously and supplied about 28 g N/d.

2. Total duodenal digesta was collected manually for 72 h and the proportions of microbial N in that digesta were simultaneously estimated for all sheep using RNA, radioactive sulphur (35S), diaminopimelic acid (DAPA) and aminoethylphosphonic acid (AEPA) as markers.

3. Three of the estimation methods showed that the variable source of dietary N had the greatest (RNA P < 0.05, 35S P < 0.005, DAPA P < 0.1) effect on the proportions of microbial N in duodenal digesta, though differences between sheep accounted for some variation.

4. These methods also ranked the diets in the order: urea > soya-bean meal > fish meal with respect to the proportions of digesta N that were microbial in origin; the respective mean values for these diets with the different markers were: RNA 0.98, 0.70, 0.56; 35S 0.92, 0.64, 0.54; DAPA 0.80, 0.47, 0.42.

5. AEPA was found to be present in substantial quantities not only in isolated rumen protozoa, but also in dietary and bacterial material; an observation that invalidated its further use as a protozoal marker.

6. Calculations using values obtained from the 35S procedure showed that the proportions of dietary N degraded within the rumen were 0.38, 0.43 and 0.89 for the white fish meal, soya-bean meal and barley respectively.

7. The marker methods are compared and their advantages and disadvantages (real and apparent) are discussed. It is concluded that where microbial N estimates of a more general and comparative nature are required, the use of RNA as a marker is probably adequate. Where information for more exacting purposes is required, the use of 35S appears to be more appropriate.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Abou Akkada, A. R., Messmer, D. A., Fina, L. R. & Bartley, E. E. (1968). J. Dairy Sci. 51, 78.CrossRefGoogle Scholar
Alhadeff, J. A. & Daves, G. D. (1971). Biochim. biophys. Acta 244, 211.CrossRefGoogle Scholar
Anon. (1973). Can. J. Anim. Sci. 53, 761.CrossRefGoogle Scholar
Association of, Official Agricultural Chemists (1965). Official Methods of Analysis, 10th ed.Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Atkin, G. E. & Ferdinand, W. (1970). Analyt. Biochem. 38, 313.CrossRefGoogle Scholar
Beever, D. E., Harrison, D. G. & Thomson, D. J. (1972). Proc. Nutr. Soc. 31, 61A.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Bird, P. R. (1972). Aust. J. agric. Res. 25, 195.Google Scholar
Burton, K. (1956). Biochem. J. 62, 315.CrossRefGoogle Scholar
Coelho, da, Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 43.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). J. Sci. Fd Agric. 25, 45.CrossRefGoogle Scholar
El-Shazly, K., Nour, A. M. & Abou Akkada, A. R. (1975). Analyst, Land. 100, 263.CrossRefGoogle Scholar
Guinn, G. (1966). Plant Physiol. 41, 689.CrossRefGoogle Scholar
Hagemeister, H. (1975). Kieler Milchw. Forschungsber. 27, 347.Google Scholar
Harrison, D. G., Beever, D. E. & Thomson, D. J. (1972). Proc. Nutr. Soc. 31, 60A.Google Scholar
Hogan, J. P. & Weston, R. H. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 474 [Phillipson, A. T. editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Hume, I. D. (1974). Aust. J. agric. Res. 25, 155.CrossRefGoogle Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). Br. J. Nutr. 25, 165.CrossRefGoogle Scholar
Ibrahim, E. A. & Ingalls, J. R. (1972). J. Dairy Sci. 55, 971.CrossRefGoogle Scholar
Ibrahim, E. A., Ingalls, J. R. & Bragg, D. B. (1970). Can. J. Anim. Sci. 50, 397.CrossRefGoogle Scholar
Jollès, P. (1967). Proc. R. Soc. B 167, 350.Google Scholar
Kandatsu, M. & Horiguchi, M. (1962). Agric. biol. Chem. 26, 721.CrossRefGoogle Scholar
Kandatsu, M. & Horiguchi, M. (1965). Agric. biol. Chem. 29, 781.CrossRefGoogle Scholar
Kase, K., Hagino, H. & Nakayama, K. (1970). Nippon Nôgeikagaku Kaishi 44, 457.CrossRefGoogle Scholar
Kerr, S. E. & Seraidarian, K. (1945). J. biol. Chem. 159, 211.CrossRefGoogle Scholar
Kittredge, J. S. & Roberts, E. (1969). Science, N.Y. 164, 37.CrossRefGoogle Scholar
Ling, J. R. (1976). Protein metabolism in the rumen. PhD Thesis, University of Nottingham.Google Scholar
Ling, J. R. & Buttery, P. J. (1976). Proc. Nutr. Soc. 35, 39A.Google Scholar
McAllan, A. B. & Smith, R. H. (1969). Br. J. Nutr. 23, 671.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1972). Proc. Nutr. Soc. 31, 24A.Google Scholar
Mackie, R. I. (1973). J. Dairy Sci. 56, 939.CrossRefGoogle Scholar
Mason, V. C. & White, F. (1971). J. agric. Sci., Camb. 77, 91.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1977). Proc. Nutr. Soc. 36, 78A.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.CrossRefGoogle Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1966). In Methods of Biochemical Analysis, p. 113 [Glick, D., editor]. New York: Interscience.CrossRefGoogle Scholar
Nikolić, J. A. & Jovanović, M. (1973). J. agric. Sci., Camb. 81, 1.CrossRefGoogle Scholar
Oldham, J. D. & Ling, J. R. (1977). Br. J. Nutr. 37, 333.CrossRefGoogle Scholar
Onodera, R. & Kandatsu, M. (1974). Agric. biol. Chem. 38, 913.Google Scholar
Onodera, R., Shinjo, T. & Kandatsu, M. (1974). Agric. biol. Chem. 38, 921.Google Scholar
Phillipson, A. T. (1964). In Mammalian Protein Metabolism, Vol. 1. p. 71 [Munro, H. N. & Allison, J. B., editors]. London: Academic Press.CrossRefGoogle Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Br. J. Nutr. 24, 589.CrossRefGoogle Scholar
Schmidt, G. & Thannhauser, S. J. (1945). J. biol. Chem. 161, 83.CrossRefGoogle Scholar
Shimizu, H., Kakimoto, Y., Nakajima, T., Kanazawa, A. & Sano, I. (1965). Nature, Lond. 207, 1197.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1974). Br. J. Nutr. 31, 27.CrossRefGoogle Scholar
Sutton, J. D., Smith, R. H., McAllan, A. B., Storry, J. E. & Corse, D. A. (1975). J. agric. Sci., Camb. 84, 317.CrossRefGoogle Scholar
Synge, R. L. M. (1953). J. gen. Microbiol. 9, 407.Google Scholar
Tamari, M. & Kametaka, M. (1973). Agric. biol. Chem. 37, 933.Google Scholar
Temler-Kucharski, A. & Gaussères, B. (1965). Annls biol. anim. Biochim. Biophys. 5, 207.CrossRefGoogle Scholar
Ulyatt, M. J., MacRae, J. C., Clarke, R. T. J. & Pearce, P. D. (1975). J. agric. Sci., Camb. 84, 453.CrossRefGoogle Scholar
Warburg, O. & Christian, W. (1942). Biochem. Z. 310, 384.Google Scholar
Work, E. & Dewey, D. L. (1953). J. gen. Microbiol. 9, 394.CrossRefGoogle Scholar