Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T02:49:51.896Z Has data issue: false hasContentIssue false

A simple procedure using 35S incorporation for the measurement of microbial and undegraded food protein in ruminant digesta

Published online by Cambridge University Press:  09 March 2007

J. C. Mathers
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
E. L. Miller
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simple procedure using 35S incorporation for the measurement of microbial protein in abomasal or duodenal digesta of ruminants was developed and tested.

Microbial protein synthesized in the rumen was labelled with 35S by intraruminal infusion of 35SO4 and a microbial fraction was isolated by differential centrifugation.

35S not bound by micro-organisms and present as inorganic 35S in whole digesta and in microbial fractions was oxidized to 35SO4 and the samples were brought into solution by acid-hydrolysis. 35SO4 was precipitated as Ba35SO4.

The proportion of microbial non-ammonia-nitrogen (NAN) in digesta NAN was determined as 35S:NAN (digesta) ÷ 35S:NAN (microbial).

In sheep offered grass nuts at maintenance level of feeding, 48% of NAN flowing through the abomasum was of microbial origin. NAN flow to the small intestine was estimated using chromic oxide as a marker and it was calculated that 49% of the grass N was degraded in the rumen.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Akin, D. E., Burdick, D. & Michaels, G. E. (1974). Appl. Microbiol. 27, 1149.CrossRefGoogle Scholar
Allen, S. A. (1971). Microbial protein synthesis in the rumen. PhD Thesis, University of Cambridge.Google Scholar
Amos, H. E., Evans, J. & Burdick, D. (1976). J. Anim. Sci. 42, 970.CrossRefGoogle Scholar
Anderson, C. M. (1956). N.Z.Jl Sci. Technol. 37A, 379.Google Scholar
Bauchop, T., Clarke, R. T. J. & Newhook, J. C. (1975). Appl. Microbiol. 30, 668.CrossRefGoogle Scholar
Beever, D. E., Harrison, D. G., Thornson, D. J., Carnmell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Ben-Ghedalia, D., McMenirnan, N. P. & Armstrong, D. G. (1978). Br. J. Nutr. 39, 37.CrossRefGoogle Scholar
Bird, P. R. (1973). Aust. J. biol. Sci. 26, 1429.CrossRefGoogle Scholar
Bird, P. R. & Hume, I. D. (1971). Aust. J. agric. Res. 22, 443.CrossRefGoogle Scholar
Bird, S., Baigent, D. R., Dixon, R. & Leng, R. A. (1978). Proc. Aust. Soc. Amin. Prod. 12, 137.Google Scholar
Block, R. J., Stekol, J. A. & Loosli, J. K. (1951). Archs Eiochem. 33, 353.CrossRefGoogle Scholar
Buttery, P. J. & Cole, D. J. A. (1977). Proc. Nutr. Soc. 36, 211.CrossRefGoogle Scholar
Coelho de Silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 357.CrossRefGoogle Scholar
Corbett, J. L., Greenhalgh, J. F. D., McDonald, I. & Florence, E. (1960). Br. J. Nutr. 14, 289.CrossRefGoogle Scholar
Echlin, P. (1971). In Scanning Electron Microscopy, p. 307 [Heywood, V. H., editor]. London: Academic Press.Google Scholar
Fawcett, J. K. & Scott, J. E. (1960). J. clin. Path. 13, 156.CrossRefGoogle Scholar
Fleck, A. & Munro, H. N. (1965). Clinica chim. Acta 11, 2.CrossRefGoogle Scholar
Gawthorne, J. M. & Nader, C. J. (1976). Br. J. Nutr. 35, 11.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1973). Br. J. Nutr. 30, 231.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E. & Osbourn, D. F. (1979). Br. J. Nutr. 41, 521.CrossRefGoogle Scholar
Harrop, C. J. F. (1974). J. agric. Sci., Camb. 83, 249.CrossRefGoogle Scholar
Henderickx, H. (1961). Arch int. Physiol. Biochem. 69, 449.Google Scholar
Hogan, J. P. & Weston, R. H. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 474 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hume, I. D. (1974). Aust. J. agric. Res. 25, 155.CrossRefGoogle Scholar
Hungate, R. E., Reichl, J. & Prins, R. (1971). Appl. Microbiol. 22, 1104.CrossRefGoogle Scholar
Hydbn, S. (1961). In Digestive Physiology and Nutrition of the Ruminant, p. 35 [Lewis, D., editor]. London: Butterworths.Google Scholar
Jeffay, H., Olubajo, F. O. & Jewell, W. R. (1960). Analyt. Chem. 32, 306.CrossRefGoogle Scholar
Journet, M. & Verite, R. (1977). In Protein Metabolism and Nutrition, p. 119 [Taminga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Kennedy, P. M., Hogan, J. P., Lindsay, J. R. & Hogan, R. M. (1976). Aust J. biol. Sci. 29, 525.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nurr. 39, 65.CrossRefGoogle Scholar
Leibholz, J. (1972). Aust. J. agric. Res. 23, 1073.CrossRefGoogle Scholar
Lewis, D. (1954). Biochem. J. 56, 391.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1978). Br. J. Nurr. 39, 165.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
McMeniman, N. P., Ben-Ghedalia, D. & Elliott, R. (1976). Br. J. Nutr. 36, 571.CrossRefGoogle Scholar
Mahin, D. T. & Lofberg, R. J. (1966). Analyt. Chem. 16, 500.Google Scholar
Mathers, J. C. & Miller, E. L. (1977 a). Proc. Nutr. Soc. 37, 7A.Google Scholar
Mathers, J. C. & Miller, E. L. (1977 b). Proc. Nutr. Soc. 37, 75A.Google Scholar
Mercer, J. R., Allen, S. A. & Miller, E. L. (1980). Br. J. Nutr. (In the Press).Google Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.CrossRefGoogle Scholar
Owen, J. B., Davies, D. A. R., Miller, E. L. & Ridgman, W. J. (1967). Anim. Prod. 9, 509.Google Scholar
Phillipson, A. T. (1964). In Mammalian protein metabolism, Vol. 1, p. 71 [Munro, H. N. and Allison, J. B., editors]. London: Academic Press.CrossRefGoogle Scholar
Proud, C. J. (1972). A study of the digestion of nitrogen in the adult sheep. PhD Thesis, University of New-castle upon Tyne.Google Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32A.Google Scholar
Roy, J. H. B., Balch, C. C., Miller, E. L., Ørskov, E. R. & Smith, R. H. (1977). In Protein Metabolism and Nutrition, p. 126 [Tamminga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Ridgman, W. J. (1975). Experimentation in biology. Glasgow and London: Blackie.Google Scholar
Salton, M. R. J. (1960). In The Bacteria, Vol. 1, p. 97 [Gunsalus, I. C. and Stanier, R. Y., editors]. New York and London: Academic Press.Google Scholar
Satter, L. D. & Roffler, R. E. (1977). In Protein Metabolism and Nutrition, p. 133 [Tamminga, S., editor]. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, p. 399 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, Australia: University of New England Publishing Unit.Google Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). J. agric. Sci., Camb. 9, 557.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1975). Aust. J. agric. Res. 26, 689.CrossRefGoogle Scholar
Weller, R. A. & Pilgrim, A. F. (1974). Br. J. Nutr. 32, 241.CrossRefGoogle Scholar