Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T03:23:39.578Z Has data issue: false hasContentIssue false

Serum colloidal osmotic pressure in the development of kwashiorkor and in recovery: its relationship to albumin and globulin concentrations and oedema

Published online by Cambridge University Press:  09 March 2007

W. A. Coward
Affiliation:
Medical Research Council Child Nutrition Unit, PO Box 6717, Kampala, Uganda
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Serum colloidal osmotic pressure was measured in children ‘at risk’ to kwashiorkor, in others with frank signs of the disease and during recovery. Simultaneous estimations of serum albumin and globulin concentrations and assessments of the extent of oedema were also made.

2. During the development of kwashiorkor, serum colloidal osmotic pressure did not decrease significantly until albumin concentration was 25.1–27.5 g/l. Above 30.0 g/l, colloidal osmotic pressure was maintained at normal levels during which time a significant reciprocal relationship existed between albumin and globulin concentrations. These findings provide support for suggestions that there may be an oncotic regulation of albumin synthesis.

3. Low albumin concentrations were mainly responsible for the low colloidal osmotic pressures found in children with kwashiorkor and in agreement with previous findings the threshold for the formation of oncotic oedema was found to be about 2.35–2.65 kN/m2.

4. Values for colloidal osmotic pressure calculated from serum albumin and gobulin concentrations using empirical formulas did not agree well with measured values and no constant correction factor suitable over the whole range of albumin concentrations found in rural Ugandan children could be devised. In many hypoalbuminaemic children only direct measurement of serum colloidal osmotic pressure will indicate the true extent of risk to an episode of oedema.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Alleyne, G. A. O. (1966). W. Indian med. J. 15, 150.Google Scholar
Armstrong, S. H., Kark, R. M., Schoenberger, J. A., Shatkin, J. & Sights, R. (1954). J. clin. Invest. 33, 297.CrossRefGoogle Scholar
Bjøneboe, M. (1946). Acta med. scand. 123, 393.Google Scholar
Coward, D. G., Sawyer, M. B. & Whitehead, R. G. (1971). Am. J. clin. Nutr. 24, 940.CrossRefGoogle Scholar
Coward, W. A., Whitehead, R. G. & Coward, D. G. (1972). Br. J. Nutr. 28, 433.Google Scholar
Fishberg, E. H. (1929). J. biol. Chem. 81, 205.CrossRefGoogle Scholar
Frood, J. D. L., Whitehead, R. G. & Coward, W. A. (1971). Lancet ii, 1047.CrossRefGoogle Scholar
Ingerslev, P., Larsen, O. A. & Lassen, N. A. (1966). Scand. J. din. Lab. Invest. 18, 431.CrossRefGoogle Scholar
Interdepartmental Committee on Nutrition for National Defense (1963). Manual for Nutrition Surveys. Bethesda, Md.: National Institutes of Health.Google Scholar
Kesselman, R. H. (1950). Science, N. Y. 112, 255.CrossRefGoogle Scholar
Keys, A. (1938). J. phys. Chem., Wash. 42, 11.Google Scholar
Kirsch, R., Saunders, S. S., Frith, L., Wicht, S. & Brock, S. F. (1969). S. Afr. med. J. 43, 125.Google Scholar
Marrack, J. & Hewitt, L. F. (1927). Biochem. J. 21, 1129.Google Scholar
Meyer, P. D. (1951). Science, N.Y. 113, 279.CrossRefGoogle Scholar
Rothschild, M. A., Oratz, M., Evans, C. D. & Schreiber, S. S. (1966). Am. J. Physiol. 210, 57.CrossRefGoogle Scholar
Rothschild, M. A., Oratz, M., Franklin, E. C. & Schreiber, S. S. (1962). J. clin. Invest. 41, 1564.Google Scholar
Rothschild, M. A., Oratz, M., Mongelli, J., Fishman, L. & Schreiber, S. S. (1969). J. Nutr. 98, 395.Google Scholar
Rothschild, M. A., Oratz, M., Mongelli, J. & Schreiber, S. S. (1965). J. Lab. clin. Med. 66, 733.Google Scholar
Scatchard, G. (1951). Science, N. Y. 113, 201.Google Scholar
Scatchard, G., Batchelder, A. C. & Brown, A. (1944). J. clin. Invest. 23, 458.CrossRefGoogle Scholar
Schultze, H. E. & Heremans, J. F. (1966). Molecular Biology of Human Proteins, vol. 1. Amsterdam, London and New York: Elsevier.Google Scholar
Srikantia, S. G. (1968). In Calorie Deficiencies and Protein Deficiencies, p. 203 [McCance, R. A. and Widdowson, E. M. editors]. London: J. & A. Churchill.Google Scholar
Staff, T. H. E. (1968). E. Afr. med. J. 45, 399.Google Scholar
Starling, E. H. (1896). J. Physiol., Lond. 19, 312.Google Scholar
Verney, E. B. (1926). J. Physiol., Lond. 61, 319.Google Scholar
Wells, H. S., Youmans, J. B. & Miller, D. G. (1933). J. clin. Invest. 12, 1103.Google Scholar
Whitehead, R. G., Frood, J. D. L. & Poskitt, E. M. E. (1971). Lancet ii, 287.Google Scholar
Wies, C. H. & Peters, J. P. (1937). J. clin. Invest. 16, 93.Google Scholar