Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T11:22:03.478Z Has data issue: false hasContentIssue false

Secretion and reabsorption of endogenous protein along the small intestine of sheep: estimates derived from 15N dilution of plasma non-protein-N

Published online by Cambridge University Press:  09 March 2007

J. Van Bruchem
Affiliation:
Wageningen Institute of Animal Sciences (WIAS), Agricultural University, Haarweg 10, 6709 PJ Wageningen, The Netherlands
J Voight
Affiliation:
Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Fachbereich Ernährungsphysiologie ‘Oskar Kellner’, Rostock, Germany
Toos S. C. W Lammers-Wienhoven
Affiliation:
Wageningen Institute of Animal Sciences (WIAS), Agricultural University, Haarweg 10, 6709 PJ Wageningen, The Netherlands
Ulrike Schönhusen
Affiliation:
Forschungsinstitut für die Biologie landwirtschaftlicher Nutztiere, Fachbereich Ernährungsphysiologie ‘Oskar Kellner’, Rostock, Germany
J. J. M. H Ketelaars
Affiliation:
DLO-Research Institutefor Agrobiology and Soil Fertility (AB-DLO), Wageningen, The Netherlands
S Tamminga
Affiliation:
Wageningen Institute of Animal Sciences (WIAS), Agricultural University, Haarweg 10, 6709 PJ Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sheep fitted with a PVC cannula in the dorsal rumen, a silastic infusion tube in the abomasum, and single ‘T’-shape PVC cannulas in the proximal duodenum (D1), distal duodenum (D2), mid-jejunum (J), and terminal ileum (I), were fed on diets varying in crude protein (Nx6·25) and fibre contents. 15N was administered to the sheep as a 15N-labelled grass meal-beer yeast suspension which was continuously infused into the abomasum over a period of 1 week. Subsequently, over a period of 4 d, 15N excess in the D1, D2, J and I digesta and faeces was measured and related to 15N excess in blood plasma TCA-soluble N. Average daily intakes of DM and N were 1·12 kg and 26·3 g respectively. Average daily endogenous N (g) amounted to 3·1 at D1, 10·2 at D2, 6·1 at J, 5·0 at I, and 5·1 in the faeces (F). Corresponding percentage values for total N were: D1 12·4, D2 32·9, J 46-4, I 48.4 and F 50.7. The secretion, particularly of pancreatic juice and/or bile, varied. The apparent re-absorption of endogenous protein varied among experimental diets, on average by 50·4% between D2 and I. Along the small intestine the percentage of 15N in the TCA-precipitable fraction gradually changed, on average by 66·0, 63·0, 46·3 and 55·7 at D1, D2, J and I respectively. Because of differential rates of enrichment and turnover among protein pools which contribute towards endogenous secretion, care should be taken in interpreting these data as absolute values.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Alpers, D. H. (1972). Protein synthesis in intestinal mucosa: the effect of route of administration of precursor amino acids. Journal of Clinical Investigation 51, 167173.CrossRefGoogle ScholarPubMed
Association of Official Analytical Chemists (1990). Official Methods of Analysis, 15th ed. Washington, D.C.: Association of Official Analykal Chemists.Google Scholar
Ben-Ghedalia, D., Tagari, H. & Bondi, A. (1974). Protein digestion in the intestine of sheep. British Journal of Nutrition 31, 125142.CrossRefGoogle ScholarPubMed
Bergner, U., Bergner, H. & Simon, O. (1984). Untersuchungen zu endogenen N-Umsatzprozessen an 15Nmarkierten Schweinen. 2. Mitt.: Fäkale Exkretion von Aminosäuren und 15N-markierten Aminosiuren bei unterschiedlichen Rohfasergehalt der Diäten (Investigations on endogenous N conversions in 15N-labelled pigs. 2. Faecal excretion of amino acids in relation to dietary fibre content). Archives of Animal Nutrition 34, 505517.Google Scholar
Bosch, M. W., Janssen, I. M., Van Bruchem, J., Boer, H. & Hof, G. (1988). Digestion of alfalfa and grass silages in sheep. 1. Rates of fermentation in and passage from the reticulo-rumen. Netherlands Journal of Agricultural Science 36, 175185.CrossRefGoogle Scholar
Brouwer, B. O. (1990). DBSTAT User's Guide. Wageningen, The Netherlands: Department of Animal Husbandry, Agricultural University.Google Scholar
Chen, X. B., Ørskov, E. R. & DeB. Hovell, F. D. (1990). Excretion of purine derivatives by ruminants: endogenous excretion, differences between cattle and sheep. British Journal of Nutrition 63, 121129.CrossRefGoogle ScholarPubMed
Cheng, K. J. & Costerton, J. W. (1980). Adherent bacteria in ruminant digestion. In Digestive Physiology and Metabolism in Ruminants, pp. 227250 [Ruckebush, Y. and Thivend, P. editors]. Lancaster: MTP Press Limited.CrossRefGoogle Scholar
De Lange, C. F. M., Souffrant, W. B. & Sauer, W. C. (1990). Real ileal protein and amino acid digestibilities in feedstuffs for growing pigs as determined with the 15N-isotope dilution technique. Journal of Animal Science 78, 409418.CrossRefGoogle Scholar
Egan, A. R., Boda, K. & Varady, J. (1986). Regulation of nitrogen metabolism and recycling. In Control of Digestion and Metabolism in Ruminants, pp. 386402 [Milligan, L. P.Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Fuller, M. F. & Cadenhead, A. (1991). Effect of the amount and composition of the diet on galactosamine flow from the small intestine. In Digestive Physiology in Pigs. Proceedings of Vth International Symposium on Digestive Physiology in Pigs, European Association of Animal Production, Publication no 54, pp. 331333 [Verstegen, M. W. A.Huisman, J. and den Hartog, L. A. editors]. Wageningen: Pudoc.Google Scholar
Hoover, W. H. (1986). Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science 69, 27552766.CrossRefGoogle ScholarPubMed
Huisman, J., Heinz, Th., Van der Poel, A. F. D., Van Leeuwen, P., Souffrant, W. B. & Verstegen, M. W. A. (1992). True protein digestibility and amounts of endogenous protein measured with the 15N technique in piglets fed on peas (Pisum sativum) and common beans (Phaseolus vulgaris). British Journal of Nutrition 68, 101110.CrossRefGoogle ScholarPubMed
Makkink, C. A. (1993). Of piglets, dietary proteins, and pancreatic proteases. Doctorate Thesis, Wageningen Agricultural University, The Netherlands.Google Scholar
Meyer, R. M., Bartley, E. E., Deyoe, C. W. & Colenbrander, V. F. (1967). Feed processing. 1. Ration effects on rumen microbial protein synthesis and amino acid composition. Journal of Dairy Science 50, 13271331.CrossRefGoogle Scholar
Moore, S. (1963). On the determination of cystin and cysteic acid. Journal of Biological Chemistry 238, 235237.CrossRefGoogle Scholar
Oosting, S. J., Van Bruchem, J. & Chen, X. B. (1995). Intake, digestion and small intestinal protein availability in sheep in relation to ammoniation of wheat straw with or without protein supplementation. British Journal of Nutrition 75, 347368.CrossRefGoogle Scholar
Schönhusen, U., Voigt, J., Piatkowski, B. & Kreienbring, F. (1990). Untersuchungen zur Nutzung von Ribonukleinsäure als Marker für die Messung des mikrobiellen Proteinertrages in Pansen. 2. Einfluss der Probenbehandlung, des Probenahmezeitpunktes und der Rationszusammensetzung auf das RNS:N-Verhältnis in den Pansenmikroben (Studies on ribonucleic acid as a marker for microbial protein yield in the rumen. 2. Effect of sample treatment, sampling time and diet composition on RNA:N ratio in rumen microbes). Archives of Animal Nutrition 40, 7584.Google Scholar
Siddons, R. C., Beever, D. E. & Nolan, J. V. (1982). A comparison of methods for the estimation of microbial nitrogen in duodenal digesta of sheep. British Journal of Nutrition 48, 377389.CrossRefGoogle ScholarPubMed
Souffrant, W. B. (1991). Endogenous nitrogen losses during digestion in pigs. In Digestive Physiologv in Pigs. Proceedings of Vth International Symposium on Digestive Physiology in Pigs, Wageningen. European Association of Animal Production Publication no. 54, pp. 147166 [Verstegen, M. W. A.Huisman, J. and den Hartog, L. A. editors]. Wageningen: Pudoc.Google Scholar
Tamminga, S. & Verstegen, M. W. A. (1991). Protein nutrition and animal production: Consequences for environment and some possible recommentdations. In Proceedings 6th International Symposium on Protein Metabolism and Nutrition, pp. 2336 [Eggum, B. O., Boisen, S., Danfaer, A., Borsting, C. and Hvelplund, T., editors]. Foulum, Denmark: National Institute of Animal Science.Google Scholar
Udén, P., Colluci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle ScholarPubMed
Van Bruchem, J., Bongers, L. J. G. M., Lammers-Wienhoven, S. C. W., Bangma, G. A. & Van Adrichem, P. W. M. (1989). Apparent and true digestibility of proteins in and losses of endogenous proteins from the small intestine in sheep as related to dry matter intake and digestibility. Livestock Production Science 23, 317327.CrossRefGoogle Scholar
Van Bruchem, J., Bosch, M. W., Bongers, L. J. G. M., Bangma, G. A. & Van Adrichem, P. W. M. (1988 a). Apparent and true digestibility of amino acids in the small intestine of sheep-Effect of dry matter intake and digestibility. Proceedings of 5th EAAP Symposium on Protein Metabolism and Nutrition, Rostock, European Association for Animal Production Publication no. 35. Wissenschaftliches Zeitschrgt der Universitat Rostock, N-Reihe 37, pp. 1314. Rostock: Universitat Rostock.Google Scholar
Van Bruchem, J., Kies, A. K., Bremmers, R., Bosch, M. W., Boer, H. & Van Adrichem, P. W. M. (1988 b). Digestion of alfalfa and grass silages in sheep. 2. Digestion of protein in the reticulo-rumen and intestines. Netherlands Journal of Agricultural Science 36, 365374.CrossRefGoogle Scholar
Van Bruchem, J., Rouwers, S. M. G., Bangma, G. A., Lammers-Wienhoven, S. C. W. & Van Adrichem, P. W. M. (1985). Digestion of proteins of varying degradability in sheep. 2. Amount and composition of the protein entering the small intestine. Netherlands Journal of Agricultural Science 33, 273284.CrossRefGoogle Scholar
Van Bruchem, J., Voigt, J., Bongers, L. J. G. M. & Tamminga, S. (1996). Production and re-absorption of endogenous protein along the small intestine of sheep - Relation to gradually changing amino acid profile. Netherlands Journal of Agriculture Science (In the Press).Google Scholar
Voigt, J. & Steger, H. (1967). Zur quantitativen Bestimmung von Ammoniak, Harnstoff und Ketokörpem in biologischem Material mit Hilfe eines modifizierten Mikrodiffusionsgefässes (About the determination of ammonia, urea and ketone bodies in biological samples by a modified microdiffusion method). Archives fär Tierernährung 17, 289293.CrossRefGoogle Scholar
Wutzke, K. & Heine, W. (1984) Präparative Darstellung von hochangereichertem 15N-markiertem Hefeprotein (Preparation of high enrichment 15N-labelled yeast protein). Isotopenpraxis 20, 9093.Google Scholar