Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T16:57:47.519Z Has data issue: false hasContentIssue false

Rumen protein degradation and biosynthesis

1. A new method for determination of protein degradation in rumen fluid in vitro

Published online by Cambridge University Press:  24 July 2007

L. Raab
Affiliation:
Institute of Animal Nutrition, University of Hohenheim, Emil-Wolff-Strasse 10, 7000 Stuttgart 70, Federal Republic of Germany
B. Cafantaris
Affiliation:
Institute of Animal Nutrition, University of Hohenheim, Emil-Wolff-Strasse 10, 7000 Stuttgart 70, Federal Republic of Germany
T. Jilg
Affiliation:
Institute of Animal Nutrition, University of Hohenheim, Emil-Wolff-Strasse 10, 7000 Stuttgart 70, Federal Republic of Germany
K. H. Menke
Affiliation:
Institute of Animal Nutrition, University of Hohenheim, Emil-Wolff-Strasse 10, 7000 Stuttgart 70, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A method is described for the determination of protein degradation based on measurements of ammonia concentration and gas production (Menke et al. 1979) when a feedingstuff was incubated with rumen fluid in vitro.

2. NH3 liberated during incubation is in part used for microbial protein synthesis. Production of carbon dioxide and methane can be regarded as a measure of energy available for protein synthesis. The ratio, gas production: incorporation of NH3-nitrogen was estimated by addition of starch to the substrate. The response in gas production was linear in the range 0–200 mg starch, when starch was added to 0–200mg feedingstuff dry matter and 30 ml rumen fluid-medium mixture.

3. Linear regression between NH3-N concentration (y, mg) and gas production (x, ml) yielded an intercept (b0) representing that amountof NH3-N which would be released when no fermentable carbohydrates were available and consequently no bacterial protein synthesis took place.

4. The difference between this intercept b0 and NH3-N content in the blank (rumen fluid without substrate added) indicated the amount of NH3 liberated from protein and other N-containing compounds of the feedingstuff incubated. In vitro-degradable N (IVDN) was calculated as a proportion of total N by the equation:

Type
Research Article
Copyright
Copyright © The Nutrition Society 1983

References

Brandt, M. (1979). Versuche zur Quantifizierung der mikrobiellen Proteinsynthese im Pansen (mit Hilfe von 15N) bei Verwendung harnstoffhaltiger Rationen. PhD Thesis, University of Kiel.Google Scholar
Brandt, M. & Rohr, K. (1981). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 46, 3948.CrossRefGoogle Scholar
Brandt, M., Rohr, K. & Lebzien, P. (1981). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 46, 4959.CrossRefGoogle Scholar
Bremner, I. (1965). In Methods of Soil Analysis, Part 2, no. 9 in the series Agronomy, pp. 11791206 [Black, C. A., editor]. Madison, Wisconsin: American Society of Agronomy, Inc.Google Scholar
Cafantaris, B. (1981). Über die Wirkung von Antibiotikazusätzen auf die mikrobielle Gärung im Pansensaft in vitro. PhD Thesis, University of Hohenheim.Google Scholar
Chamberlain, D. G. & Thomas, P. C. (1979). Proceedings of the Nutrition Society 38, 138A.Google Scholar
Crooker, B. A., Sniffen, C. J., Hoover, W. H. & Johnson, L. L. (1978). Journal of Dairy Science 61, 437447.CrossRefGoogle Scholar
Evans, E. (1981). Canadian Journal of Animal Science 61, 9196 and 97103.CrossRefGoogle Scholar
Harrison, D. G. & McAllan, A. B. (1980). In Digestive Physiology and Metabolism in Ruminants, pp. 205226 [Ruckenbush, Y. and Thivend, P., editors]. Lancaster: MTP Press.CrossRefGoogle Scholar
Hespell, R. B. & Bryant, M. P. (1979). Journal of Animal Science 49, 16401659.CrossRefGoogle Scholar
Hume, I. D. (1975). In Tracer Studies on NPN for Ruminants, vol. 2, pp. 16. Vienna: International Atomic Energy Authority.Google Scholar
Jarrige, R., Journet, M. & Vérité, R. (1978). In Alimentation des Ruminants, pp. 117118. Versailles: INRA Publications.Google Scholar
Jilg, T. (1982) Diplomarbeit, Fak. IV, University of Hohenheim.Google Scholar
Ling, J. R. & Buttery, P. J. (1978). British Journal of Nutrition 39, 165179.CrossRefGoogle Scholar
McMeniman, N. P., Ben-Ghedalia, D. & Elliot, R. (1976). British Journal of Nutrition 36, 571574.CrossRefGoogle Scholar
Mathers, J. C. & Miller, E. L. (1981). British Journal of Nutrition 45, 587604.CrossRefGoogle Scholar
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979). Journal of Agricultural Science, Cambridge 93, 217222.CrossRefGoogle Scholar
Naumann, K., Bassler, R., Seibold, R. & Barth, K. (1976). In Methodenbuch vol. 3, method no. 7.2.3. [Verband landwirtshcaftlicher Untersuchungs und Forschungsanstalten, editor]. Melsungen: Neumann–Neudamm.Google Scholar
Ørskov, E. R. & McDonald, I. (1979). Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Ørskov, E. R. & Mehrez, A. Z. (1977). Proceedings of the Nutrition Society 36, 78A.Google Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. G. (1970). British Journal of Nutrition 24, 589598.CrossRefGoogle Scholar
Raab, L. (1980). Untesuchungen über den Proteinabbau und die Proteinsynthese im künstlichen Pansen. PhD Thesis, University of Hohenheim.Google Scholar
Salewski, A., Seibold, C. & Fröschle, H. (1974). Landwirtschaftliche Forschung 27, 112119.Google Scholar
Siddons, R. C., Beever, D. E., Nolan, J. V., McAllan, A. B. & MacRae, J. C. (1979). Annales de Recherche Vétérinaires 10, 286287.Google Scholar
Steingass, H. (1983). Bestimmung des energetischen Futterwerts von wirtschaftseigenen Futtermitteln aus der Gasbildung bei der Pansenfermentation in vitro. PhD Thesis, University of Hohenheim.Google Scholar
Van Nevel, C. J. & Demeyer, D. I. (1977). British Journal of Nutrition 38, 101114.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1975). Australian Journal of Agricultural Research 26, 689698.CrossRefGoogle Scholar