Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:57:06.877Z Has data issue: false hasContentIssue false

Rumen degradation and fractional outflow rates of nitrogen supplements given to cattle eating sodium hydroxide-treated straw

Published online by Cambridge University Press:  09 March 2007

K. Amaning-Kwarteng
Affiliation:
Department of Animal Husbandry, University of Sydney, Camden, New South Wales 2570, Australia
R. C. Kellaway
Affiliation:
Department of Animal Husbandry, University of Sydney, Camden, New South Wales 2570, Australia
Jane Leibholz
Affiliation:
Department of Animal Husbandry, University of Sydney, Camden, New South Wales 2570, Australia
A. C. Kirby
Affiliation:
Department of Genetics and Biometry, University of Sydney, New South Wales 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six rumen and abomasal cannulated heifers were used to study the effects of intake on the fractional outflow rates (FOR) of chromium-mordanted cotton-seed meal (Cr-CSM) and meat meal (Cr-MM), CrEDTA, ytterbium and lignin from the rumen. Values of FOR of Cr-CSM and Cr-MM were combined with values of nitrogen disappearance from the protein supplements, placed in porous synthetic (nylon) bags and incubated within the rumen (P), to calculate effective degradation (D)of CSM and MM when fed to heifers eating sodium hydroxide-treated straw. Also, N degradation in vivo (V) was measured as the difference between abomasal N flow and the sum of flows of microbial and endogenous N.

2. FOR were positively related to intake and differences between supplements were significant (p <0.01). FOR pertaining to high and low intakes respectively were 0.073 and 0.052 for Cr-CSM, 0.082 and 0.071 for Cr-MM, 0.030 and 0.023 for lignin, 0.082 and 0.073 for CrEDTA and 0, 044 and 0.035 for Yb.

3. A rise of 28.8 and 13.4% in FOR of Cr-CSM and Cr-MM respectively, associated with an increase in intake from maintenance to 1.5 times maintenance, resulted in 10.7 and 2.2% reductions in D, 24 h after feeding, for CSM and MM respectively.

4. With the exception of CSM at the high intake, estimates of V were underestimated by D and were 8.6–25.0% greater than the D values when time of incubation (t)= ∞. The two techniques, however, ranked the degradation of the two supplements in the same order at both levels of intake.

5. Underestimation of V by D may be attributable to underestimation of P, overestimation of FOR (both resulting in underestimation of D) or overestimation of V due to biases associated with the estimation of this part of the comparison. The relative importance of these factors remains to be determined.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Amaning-Kwarteng, K., Kellaway, R. C. & Leibholz, J. (1984). Proceedings of the Nutrition Society of Australia 9, 152Abstr.Google Scholar
Armstrong, D. G. & Brookes, L. M. (1981). In Recent Advances in Animal Nutrition in Australia, pp. 2439 [Farrell, D. J., editor]. Armidale: University of New England Publishing Unit.Google Scholar
Binnerts, W. T., Van't Klooster, A. Th. & Frens, A. M. (1968). Veterinary Record 82, 470.Google Scholar
Chapman, P. G. & Norton, B. W. (1982). Proceedings of the Australian Society of Animal Production 14, 580583.Google Scholar
Chapman, P. G. & Norton, B. W. (1984). Proceedings of the Australian Society of Animal Production 15, 286289.Google Scholar
Eliman, M. E. & Ørskov, E. R. (1984). Animal Production 38, 4551.Google Scholar
Evans, E. (1981 a). Canadian Journal of Animal Science 61, 9196.CrossRefGoogle Scholar
Evans, E. (1981 b). Canadian Journal of Animal Science 61, 97103.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, pp. 277291 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Freer, M. & Dove, H. (1984). Animal Feed Science and Technology 11, 87101.CrossRefGoogle Scholar
Ganev, G., Ørskov, E. R. & Smart, R. (1979). Journal of Agricultural Science, Cambridge 93, 651656.CrossRefGoogle Scholar
Goering, H. K. & Van soest, P. J. (1970). Forage Fiber Analyses. Agriculture Handbook no. 379. Washington, DC: US Department of Agriculture.Google Scholar
Grovum, W. L. & Williams, V. J. (1973). British Journal Nutrition 30, 313329.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1977). British Journal of Nutrition 38, 425436.CrossRefGoogle Scholar
Grubb, J. A. & Dehority, B. A. (1975). Applied Microbiology 30, 404412.CrossRefGoogle Scholar
Hart, F. J., Leibholz, J. & Hogan, J. P. (1982). Proceedings of the Australian Society of Animal Production 14, 602Abstr.Google Scholar
Hodgson, J. C., Thomas, P. C. & Wilson, A. G. (1976). Journal of Agricultural Science, Cambridge 87, 297302.CrossRefGoogle Scholar
Hughes-Jones, M. (1979). MSc. Thesis, University of AberdeenGoogle Scholar
cited by Ørskov, E. R., Hovell, F. D. DeB., & Mould, F. (1980). Tropical Animal Production 5, 195213.Google Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). British Journal of Nutrition 25, 165173.CrossRefGoogle Scholar
Lindberg, J. E. (1982). Journal of Agricultural Science, Cambridge 98, 689691.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1976). British Journal of Nutrition 36, 511522.CrossRefGoogle Scholar
Mansbridge, R. J. & Ørskov, E. R. (1980). Animal Production 30, 486487.Google Scholar
Mathers, J. C. & Miller, E. L. (1981). British Journal of Nutrition 45, 587604.CrossRefGoogle Scholar
Mehrez, A. Z. & Ørskov, E. R. (1977). Journal of Agricultural Science, Cambridge 88, 645650.CrossRefGoogle Scholar
Miles, J. T. (1951). Journal of Dairy Science 34, 492 Abstr.Google Scholar
Minson, D. I. (1966). British Journal of Nutrition 20, 765773.CrossRefGoogle Scholar
Ørskov, E. R., Hovell, F. D. DeB & Mould, F. (1980). Tropical Animal Production 5, 195213.Google Scholar
Ørskov, E. R., Hughes-Jones, M. & McDonald, I. (1981). In Recent Advances in Animal Nutrition, pp. 8598 [Haresign, W., editor]. London: Butterworths.Google Scholar
Ørskov, E. R., & McDonald, I. (1979). Journal of Agricultural Science, Cambridge 92, 499503.CrossRefGoogle Scholar
Owens, F. N., Kazemi, M., Galyean, M. L., Mizwicki, K. L. & Solaiman, S. G. (1979). Okalahoma Agricultural Experimental Station Report MP-104, 2729.Google Scholar
Prange, R. W., Stern, M. D., Rode, L. M., Santos, K. A. S., Jorgensen, N. A. & Satter, L. D. (1979). Journal of Animal Science 49, 398 Abstr.Google Scholar
Punia, B. S. & Leibholz, J. (1984). Canadian Journal of Animal Science 64, 2425.CrossRefGoogle Scholar
Rooke, J. A. & Armstrong, D. G. (1983). In Proceedings of the Fourth International Symposium in Protein Metabolism and Nutrition, pp. 235238 [Pian, R., Arnal, M. and Bonin, D., editors]. Paris: INRA Publications.Google Scholar
Rooke, J. A., Brookes, I. M. & Armstrong, D. J. (1983). Journal of Agricultural Science, Cambridge 110, 329342.CrossRefGoogle Scholar
Sriskandarajah, N. & Kellaway, R. C. (1984). British Journal of Nutrition 51, 289296.CrossRefGoogle Scholar
Sriskandarajah, N., Kellaway, R. C. & Leibholz, J. (1981). Journal of Agricultural Science, Cambridge 97, 231232.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1980). Principles and Procedures of Statistics, 2nd ed. New York: McGraw-Hill.Google Scholar
Udén, P., Colucci, P. E. & Van Soest, P. J. (1980). Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle Scholar
Waldo, D. R., Miller, R. W., Okamoto, M. & Moore, L. A. (1965). Journal of Dairy Science 48, 14731480.CrossRefGoogle Scholar
Warner, A. C. I. (1981). Nutrition Abstracts and Reviews Series B 51, 789820.Google Scholar
Zinn, R. A, Bull, L. S. & Hemken, R. W. (1981). Journal of Animal Science 52, 857866.CrossRefGoogle Scholar