Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T09:36:50.895Z Has data issue: false hasContentIssue false

Relationships between copper, zinc and iron in the plasma, soft tissues and skeleton of the rat during Cu deficiency

Published online by Cambridge University Press:  24 July 2007

Begona Alfaro
Affiliation:
Department of Biological Sciences, University of Lancaster, Bailrigg, Lancaster
F. W. Heaton
Affiliation:
Department of Biological Sciences, University of Lancaster, Bailrigg, Lancaster
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of dietary copper deficiency on the distribution of Cu, zinc and iron between plasma, various soft tissues and bone was investigated in weanling male rats.

2. The concentration of Cu decreased in plasma, liver, kidney and femur, and the concentration in plasma correlated with that in all three organs. The total amount of Cu in the liver was reduced over the whole depletion period and a net loss from kidney also occurred over a shorter period, indicating that liver and, to a lesser extent, kidney both provide a mobilizable reserve of Cu.

3. Animals in galvanized cages developed Cu deficiency more rapidly than similar rats in stainless-steel cages owing to Zn aggravating the depletion. Zn accumulated in the liver and femur of Cu deficient rats, particularly when they were housed in galvanized cages.

4. Cu-deficient animals accumulated Fe in the liver, but had reduced concentrations in plasma, kidney and spleen. The hypertrophy of the heart and bone-marrow observed in Cu-deficient rats appeared to be secondary to the anaemia resulting from this impaired mobilization of hepatic Fe.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Apgar, J. (1968). Am. J. Physiol. 215, 1478.CrossRefGoogle Scholar
Baxter, J. H. & Van Wyk, J. J. (1953). Johns Hopkins Hosp. Bull. 93, I.Google Scholar
Brückmann, G. & Zondeck, S. G. (1940). Nature, Lond. 146, 30.Google Scholar
Chou, T. P. & Adolph, W. H. (1935). Biochem. J. 29, 476.Google Scholar
Cunningham, I. J. (1946). N.Z. Jl Sci. Technol. 27A, 372.Google Scholar
Dacie, J. V. & Lewis, S. M. (1963). Practical Haematology pp. 36, 402. London: J. and A. Churchill.Google Scholar
Dempsey, H., Cartwright, G. E. & Wintrobe, M. M. (1958). Proc. Soc. exp. Biol. Med. 98, 520.Google Scholar
Dowdy, R. P. (1969). Am. J. clin. Nutr. 22, 887.Google Scholar
Dreosti, I. E. (1967). S. Afr. J. agric. Sci. 10, 95.Google Scholar
Duncan, G. D., Gray, L. F. & Daniel, L. J. (1953). Proc. Soc. exp. Biol. Med. 83, 625.Google Scholar
Grant-Frost, D. R. & Underwood, E. J. (1958). Aust. J. exp. Biol. med. Sci. 36, 339.Google Scholar
Gubler, C. J., Cartwright, G. E. & Wintrobe, M. M. (1957). J. biol. Chem. 224, 533.Google Scholar
Gubler, C. J., Lahey, M. E., Ashenbrucker, H., Cartwright, G. E. & Wintrobe, M. M. (1952). J. biol. Chem. 196, 209.CrossRefGoogle Scholar
Hazelrig, J. B., Owen, C. A. Jr & Ackerman, E. (1966). Am. J. Physiol. 211, 1075.Google Scholar
Heaton, F. W. & Anderson, C. K. (1965). Clin. Sci. 28, 99.Google Scholar
Lindow, C. W., Peterson, W. H. & Steenbock, H. (1929). J. biol. Chem. 84, 419.Google Scholar
Lorenzen, E. J. & Smith, S. E. (1947). J. Nutr. 33, 143.CrossRefGoogle Scholar
Marston, H. R., Allen, S. H. & Swaby, S. L. (1971). Br. J. Nutr. 25, 15.Google Scholar
Mills, C. F. & Murray, G. (1960). J. Sci. Fd Agric. 11, 547.CrossRefGoogle Scholar
O'Dell, B. L. (1967). Proc. Univ. Mo. Annu. Canf. Trace Subst. Environ. Hlth 1, 134.Google Scholar
Owen, C. A. Jr & Hazelrig, J. B. (1966). Am. J. Physiol. 210, 1059.Google Scholar
Owen, C. A. Jr & Hazelrig, J. B. (1968). Am. J. Plzysiol. 215, 334.Google Scholar
Owen, C. A. Jr & Orvis, A. L. (1970). Am. J. Physiol. 218, 88.CrossRefGoogle Scholar
Roeser, H. P., Lee, G. R., Nacht, S. & Cartwright, G. E. (1970). J. clin. Invest. 49, 2408.CrossRefGoogle Scholar
Schultze, M. O., Elvehjem, C. A. & Hart, E. B. (1936). J. biol. Chem. 115, 453.Google Scholar
Schultze, M. O. & Simmons, S. (1942). J. biol. Chem. 142, 97.CrossRefGoogle Scholar
Starcher, B. C. (1969). J. Nutr. 97, 321.CrossRefGoogle Scholar
Underwood, E. J. (1962). Trace Elements In Human and Animal Nutrition 2nd ed., p. 48. London: Academic Press.Google Scholar
Van Campen, D. R. (1969). J. Nutr. 97, 104.Google Scholar
Van Campen, D. R. & Scaife, P. U. (1967). J. Nutr. 91, 473.Google Scholar
Wintrobe, M. M., Cartwright, G. E. & Gubler, C. J. (1953). J. Nutr. 50, 395.CrossRefGoogle Scholar