Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T09:51:22.635Z Has data issue: false hasContentIssue false

Rate of passage of digesta in sheep

6. The effect of level of food intake on mathematical predictions of the kinetics of digesta in the reticulorumen and intestines

Published online by Cambridge University Press:  09 March 2007

W. L. Grovum
Affiliation:
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario NIG 2W2, Canada
V. J. Williams
Affiliation:
Department of Physiology, School of Rural Science, University of New England, Armidale, NSW 2351, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1.Five sheep were given 400, 625, 850, 1075 and 1300 g lucerne chaff/d according to a 5 × 5 Latin square design to perturbate a mathematical model describing the rate of passage of digesta in terms of rate constants for the reticulo-rumen (k1) and caecum and proximal

2.colon (k2), and a transit time (TT) for the intestines. These values were obtained from the concentration curves of51Cr EDTA and144Ce-144Pr (144Pr) excretion in faeces for comparison with similar measurements obtained directly.

3.The retention times of markers in the reticulo-rumen, caecum and proximal colon and intestines all decreased by approximately 50% as intakes were increased from 400 to 1300 g/d. For both markers, the direct and indirect measures of half-time in the reticulo-rumen were essentially identical. The predicted (indirect) values for half times in the caecum and proximal colon were smaller than the direct values (P < 0.005) but the correlations between them were significant (P < 0.01) for51Cr EDTA (r 0.66) and144Pr (r 0.78). The direct measures of transit time were smaller (P < 0.025) by 5–10% than the predicted values but correlations between them were significant (P < 0.01) for51Cr EDTA (r 0.91) and for144Pr (r 0.93). Thus the model predicted the changes produced in the rate of passage of digesta and its usefulness and limitations are discussed.

3.With144Pr 1/2k1 for the reticulo-rumen and T1/2k2 for the caecum and proximal colon were both positively correlated (P < 0.025) with the organic matter digestibilities. T1/2k2 decreased at half the rate of T1/2k1 with increasing intakes. This would have favoured compensatory digestion in the large intestine.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Balch, C. C. (1950). Br. J. Nutr. 4, 361.Google Scholar
Balch, C. C. & Campling, R. C. (1965). In Physiology of Digestion in the Ruminant, p. 108 [Dougherty, R. W. editor]. Washington: Butterworths.Google Scholar
Bawden, R. J. (1970). Br. J. Nutr. 24, 291.Google Scholar
Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1956). Br. J. Nutr. 10, 69.CrossRefGoogle Scholar
Briggs, P. K., Hogan, J. P. & Reid, R. L. (1957). Aust. J. agric. Res. 8, 674.Google Scholar
Campling, R. C., Freer, M. & Balch, C. C. (1961). Br. J. Nutr. 15, 531.Google Scholar
Campling, R. C., Freer, M. & Balch, C. C. (1962). Br. J. Nutr. 16, 115.Google Scholar
Castle, E. J. & Castle, M. E. (1957). J. agric. Sci., Camb. 49, 106.Google Scholar
Coombe, J. B. & Kay, R. N. B. (1965). Br. J. Nutr. 19, 325.Google Scholar
Coombe, J. B. & Tribe, D. E. (1963). Aust. J. agric. Res. 14, 70.Google Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.Google Scholar
Ellis, W. C. & Huston, J. E. (1968). J. Nutr. 95, 67.Google Scholar
Gray, F. V. (1947). J. exp. Biol. 24, 15.Google Scholar
Grovum, W. L. & Hecker, J. F. (1973). Br. J. Nutr. 30, 221.Google Scholar
Grovum, W. L. & Phillips, G. D. (1973). Br. J. Nutr. 30, 377.Google Scholar
Grovum, W. L. & Williams, V. J. (1973 a). Br. J. Nutr. 29, 13.Google Scholar
Grovum, W. L. & Williams, V. J. (1973 b). Br. J. Nutr. 30, 231.Google Scholar
Grovum, W. L. & Williams, V. J. (1973 c). Br. J. Nutr. 30, 313.Google Scholar
Hale, E. B., Duncan, C. W. & Huffman, C. F. (1940). J. Dairy Sci. 23, 953.Google Scholar
Hecker, J. F. (1969). Aust. vet. J. 45, 293.Google Scholar
Huston, J. E. & Ellis, W. C. (1968). J. agric. Fd Chem. 16, 225.Google Scholar
Jarrett, I. G. (1948). J. Coun. scient. ind. Res. Aust. 21, 311.Google Scholar
Leaver, J. D., Campling, R. C. & Holmes, W. (1969). Anim. Prod. 11, 11.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 377.Google Scholar
Mäkelä, A. (1956). Suom. maatal. Seur. Julk. 85, 1.Google Scholar
Miller, J. K., Perry, S. C., Chandler, P. T. & Cragle, R. G. (1967). J. Dairy Sci. 50, 355.Google Scholar
Minson, D. J. (1966). Br. J. Nutr. 20, 765.Google Scholar
Minson, D. J. & Cowper, J. L. (1966). Br. J. Nutr. 20, 757.Google Scholar
Paloheimo, L. & Mäkelä, A. (1959). Suom. maatal. Seur. Julk. 94, 1.Google Scholar
Phillips, G. D. (1961). Res. vet. Sci. 2, 202.Google Scholar
Porter, R. & Singleton, A. G. (1966). J. Physiol., Lond. 186, 145P.Google Scholar
Ridges, A. P. & Singleton, A. G. (1962). J. Physiol., Lond. 161, 1.Google Scholar
Shellenberger, P. R. & Kesler, E. M. (1961). J. anim. Sci. 20, 416.Google Scholar
Thornton, R. F. & Minson, D. J. (1972) Aust. J. agric. Res. 23, 871.Google Scholar
Ulyatt, M. J., Blaxter, K. L. & McDonald, I. (1967). Anim. Prod. 9, 463.Google Scholar
Warner, A. C. I. & Stacy, B. D. (1968). Br. J. Nutr. 22, 369. Yadava, I. S. & Bartley, E. E. (1964). J. Dairy Sci. 47, 1352.Google Scholar