Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T01:24:54.787Z Has data issue: false hasContentIssue false

The rate of degradation of myofibrillar proteins of skeletal muscle in broiler and layer chickens estimated by Nr-methylhistidine in excreta

Published online by Cambridge University Press:  09 March 2007

Kunioki Hayashi
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Yuichiro Tomita
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Yoshizane Maeda
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Yoshiyuki Shinagawa
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Kengo Inoue
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Tokuzo Hashizume
Affiliation:
Department of Animal Science, Faculty of Agriculture, Kagoshima University, Kagoshima 890, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. After Nr-methylhistidine (Nr-MH) distribution among the various organs or the tissues was determined in male broiler chickens of 15 d of age, the rates of degradation of myofibrillar proteins in male layer and broiler chickens at different stages of growth were determined by means of Nr-MH.

2. About 75 and 8% of the total Nr-MH in the tissues occurred respectively in skeletal muscle and stomach, and most of the remainder in the intestine and the skin.

3. The rates of degradation of myofibrillar proteins in the male layer and broiler chickens of 21, 42 and 63 d of age were calculated to be 6.1, 4.5 and 2.4%/d (layer) and 5.0, 2.8 and 0.9%/d (broiler) respectively. These calculations involve the assumption that 80% of the total excreted Nr-MH was derived from skeletal muscle.

4. The results strongly indicate that the rapid growth of the broiler chicken is facilitated by the reduced rate of protein degradation.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Cowgill, R. W. & Freeburg, B. (1957). Archives of Biochemistry and Biophysics 71, 466472.CrossRefGoogle Scholar
Funabiki, R., Watanabe, Y., Nishizawa, N. & Hareyama, S. (1976). Biochimica et Biophysica Acta 451, 143150.Google Scholar
Griggs, R. C. & Rennie, M. J. (1983). Annals of Neurology 13, 125132.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1980). British Journal of Nutrition 44, 129140.Google Scholar
Harris, C. I. & Milne, G. (1981 a). British Journal of Nutrition 45, 411422.CrossRefGoogle Scholar
Harris, C. I. & Milne, G. (1981 b). British Journal of Nutrition 45, 423429.Google Scholar
Long, C. L., Haverberg, L. N., Young, V. R., Kinney, J. M., Munro, H. N. & Geiger, J. W. (1975). Metabolism 24, 929935.CrossRefGoogle ScholarPubMed
Macdonald, M. L. & Swick, R. W. (1981). Biochemical Journal 194, 811819.Google Scholar
Millward, D. J. & Bates, P. C. (1983). Biochemical Journal 214, 607615.Google Scholar
Millward, D. J., Bates, P. C., Grimble, G. K., Brown, J. G., Nathan, M. & Rennie, M. J. (1980). Biochemical Journal 190, 225228.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Stewart, A. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochemical Journal 150, 235243.CrossRefGoogle Scholar
Nagasawa, T. & Funabiki, R. (1981). Journal of Biochemistry 89, 11551161.Google Scholar
National Research Council of Agriculture, Forestry and Fishery (1974). Nutrient Requirements of Domestic Animals: Nutrient Requirements of Poultry. Tokyo: Central Association of Livestock Industry.Google Scholar
Nishizawa, N., Noguchi, T. & Hareyama, S. (1978). Journal of Chromatography 151, 424427.Google Scholar
Nishizawa, N., Shimbo, M., Hareyama, S. & Funabiki, R. (1977). British Journal of Nutrition 37, 345353.CrossRefGoogle Scholar
Nishizawa, N., Toyoda, Y., Noguchi, T. & Hareyama, S. (1979). British Journal of Nutrition 42, 247252.Google Scholar
Perry, B. N. (1974). British Journal of Nutrition 31, 3545.Google Scholar
Reece, F. N. & Lott, B. D. (1983). Poultry Science 62, 19061908.Google Scholar
Rennie, M. J. & Millward, D. J. (1983). Clinical Science 65, 217225.Google Scholar
Saunderson, C. L. & Leslie, S. (1983). British Journal of Nutrition 50, 691700.CrossRefGoogle Scholar
Ward, L. C. (1978). Analytical Biochemistry 88, 598604.Google Scholar
Wassner, S. J. & Li, J. B. (1982). American Journal of Physiology 243, E293–E297.Google Scholar
Young, V. R., Alexis, S. D., Baliga, B. S., Munro, H. N. & Muecke, W. (1972). Journal of Biological Chemistry 247, 35923600.Google Scholar
Young, V. R., Haverberg, L. N., Bilmazes, C. & Munro, H. N. (1973). Metabolism 22, 14291436.CrossRefGoogle Scholar
Young, V. R. & Munro, H. N. (1978). Federation Proceedings 37, 22912300.Google Scholar