Published online by Cambridge University Press: 09 March 2007
Adult offspring of severely diabetic pregnant rats are insulin resistant and display cardiovascular dysfunction. When pregnant they develop mild hyperglycaemia. Diets high in saturated fat have been implicated in the development of cardiovascular disease and vascular dysfunction. In the present study we have determined vascular function in small mesenteric arteries from offspring of normal (OC) and diabetic (OD) rats fed standard chow and offspring of diabetic rats fed a diet high in saturated fats (OD-HF) from weaning to adulthood, and throughout their subsequent pregnancies. OD rats displayed an increased sensitivity to noradrenaline (P < 0·05) and impaired sensitivity to the endothelium-dependent vasodilator, acetylcholine. The component of acetylcholine-induced relaxation attributable to endothelium-derived hyperpolarizing factor was reduced in OD-HF rats. Pregnant OD rats also demonstrated impaired maximum relaxation to acetylcholine (pregnant OD rats v. pregnant OC rats P < 0·05). In pregnant OD-HF rats noradrenaline sensitivity was enhanced and endothelium-dependent relaxation further reduced (pregnant OD-HF rats v. pregnant OC rats P < 0·001). The isoprostane, 8-epi-prostaglandin F2α, a marker of oxidative stress, was increased in pregnant OD rats (pregnant OD rats v. pregnant OC rats P < 0·001) and further increased in pregnant OD-HF rats (pregnant OD-HF rats v. pregnant OD rats P < 0·05). We conclude that a high-saturated-fat diet leads to deterioration in specific components of vascular function in OD rats. When pregnant, vascular function of OD-HF rats is further compromised. Pregnancy in the OD rats is associated with a striking increase in a marker of oxidative stress, which increases further if the saturated fat intake is raised.