Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T14:42:33.780Z Has data issue: false hasContentIssue false

Protein-polyphenol reactions

1. Nutritional and metabolic consequences of the reaction between oxidized caffeic acid and the lysine residues of casein

Published online by Cambridge University Press:  24 July 2007

R. F. Hurrell
Affiliation:
Nestlé Research Department, CH-1814 La Tour de Peilz, Switzerland
P. A. Finot
Affiliation:
Nestlé Research Department, CH-1814 La Tour de Peilz, Switzerland
J. L. Cuq
Affiliation:
Laboratoire de Chimie et Technologie Alimentaire, Université des Sciences et Techniques, 34060 Montpellier, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies were made on the lysine content of casein reacted with caffeic acid oxidized aerobically under alkaline conditions or enzymically with tyrosinase (EC 1.14.18.1).

2. Loss of fluorodinitrobenzene (FDNB)-reactive lysine was rapid at pH 10 and increased with time and the temperature of the reaction, with concentration of caffeic acid and with the oxygenation of the mixture. In presence of the enzyme mushroom tyrosinase, maximum reduction of reactive lysine occurred at pH 7 and was dependent on the reaction time and on the concentration of caffeic acid.

3. Reaction of α-formyl-L-[U- 14C]lysine with caffeic acid at pH 10 showed the rapid formation of five reaction products which appeared to polymerize gradually as the reaction progressed.

4. The nutritionally available lysine content of the casein-caffeic acid mixtures, as assayed with rats, was reduced after both alkaline and enzymic reactions, as were faecal digestibility, net protein ratio and net protein utilization. Biological value however was not reduced.

5. In metabolic studies using goat milk casein labelled with L-[3H]lysine and reacted with caffeic acid in the same way, the lysine–caffeoquinone reaction products were not absorbed by the rat but were excreted directly in the faeces.

6. The importance of the reaction of proteins with caffeoquinone and chlorogenoquinone (formed by the oxidation of caffeic and chlorogenic acids respectively) is discussed in relation to the production of sunflower protein, leaf protein and other vegetable-protein concentrates.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Allison, R. M., Laird, W. M. & Synge, R. L. M. (1973). Br. J. Nutr. 29, 51.CrossRefGoogle Scholar
Bau, H. M. & Debry, G. (1980). J. Fd Techn. 15, 207.CrossRefGoogle Scholar
Bender, A. E. & Doell, B. H. (1957). Br. J. Nutr. 11, 140.CrossRefGoogle Scholar
Biserte, G., Plaquet-Schoonhaert, T., Boulanger, P. & Paysant, P. (1960). J. Chromat. 3, 25.CrossRefGoogle Scholar
Booth, V. H. (1971). J. Sci. Fd Agric. 22, 658.CrossRefGoogle Scholar
Bosshard, H. (1972). Helv. Chim. Acta 55, 32.CrossRefGoogle Scholar
Buchanan, R. A. (1969). J. Sci. Fd Agric. 20, 359.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Cater, C. M., Gheyasuddin, S. & Mattil, K. F. (1972). Cereal Chem. 49, 508.Google Scholar
Cheftel, J. C. (1979). In Nutritional and Safety Aspects of Food Processing, p. 153 [Tannenbaum, S. R., editor]. New-York: Marcel Dekker, Inc.Google Scholar
Cranwell, P. A. & Haworth, R. D. (1971). Tetrahedron 27, 1831.CrossRefGoogle Scholar
Davies, A. M. C., Newby, V. K. & Synge, R. L. M. (1978). J. Sci. Fd Agric. 29, 33.CrossRefGoogle Scholar
Davies, R. & Frahn, J. L. (1977). J. Chem. Soc. (Perkins Transactions I), 2295.Google Scholar
Eggum, B. O. & Christensen, K. D. (1975). Breeding for Seed Protein Improvement using Nuclear Techniques, p. 135. Vienna: International Atomic Energy Agency.Google Scholar
Eklund, A. (1975). Nutr. Metab. 18, 259.Google Scholar
Finney, D. J. (1964). Statistical Methods in Biological Assay, 2nd ed.New York: Hafner Publishing Co.Google Scholar
Finot, P. A. & Mauron, J. (1972). Helv. chim. Acta 55, 1153.CrossRefGoogle Scholar
Ford, J. E. & Hewitt, D. (1979). Br. J. Nutr. 42, 325.CrossRefGoogle Scholar
Free, B. L. & Satterlee, L. D. (1975). J. Fd Sci. 40, 85.CrossRefGoogle Scholar
Hawk, P. B. & Oser, B. L. (1931). Science, N. Y. 74, 369.CrossRefGoogle Scholar
Henry, K. M. & Ford, J. E. (1965). J. Sci. Fd Agric. 16, 425.CrossRefGoogle Scholar
Hofmann, K., Stutz, E., Sphüler, G., Yajima, H. & Schwartz, E. T. (1960). J. Am. Chem. Soc. 82, 3727.CrossRefGoogle Scholar
Horigome, T. & Kandatsu, M. (1968). Agric. Biol. Chem. 32, 1093.CrossRefGoogle Scholar
Hughes, R. E. (1978). J. Human Nutr. 32, 47.Google Scholar
Hurrell, R. F. (1980). In Food and Health-Science and Technology, p. 369 [Birch, G. G. and Parker, K. J., editors]. London: Applied Science.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1974). Br. J. Nutr. 32, 589.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1977). In Physical, Chemical and Biological Changes in Food caused by Thermal Processing, p. 168 [Hoyem, T. and Kvale, O., editors]. London: Applied Science.Google Scholar
Joslyn, M. A. & Ponting, J. D. (1951). Adv. Fd Res. 3, 1.CrossRefGoogle Scholar
Kühnau, J. (1976). Wld Rev. Nutr. Diet. 24, 117.CrossRefGoogle Scholar
Maga, J. A. (1978). Crit. Rev. Fd Sci. Nutr. 10, 323.CrossRefGoogle Scholar
Mason, H. S. (1955). Adv. Enzym. 16, 105.Google Scholar
Mauron, J. & Mottu, F. (1958). Archs Biochem. Biophys. 77, 312.CrossRefGoogle Scholar
Mauron, J., Mottu, F. & Egli, R. H. (1960). Annls Nutr. Aliment. 14, 135.Google Scholar
Milic, B., Stojanovic, S., Vucurevic, N. & Turcic, M. (1968). J. Sci. Fd Agric. 19, 108.CrossRefGoogle Scholar
Mitchell, H. H. (19231924). J. biol. Chem. 58, 873.CrossRefGoogle Scholar
Monties, B. & Rambourg, J. C. (1978). Ann. Technol. Agric. 27, 629.Google Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Mottu, F. & Mauron, J. (1967). J. Sci. Fd Agric. 18, 57.CrossRefGoogle Scholar
Newby, V. K., Sablon, R. M., Synge, R. L. M., Casteele, K. V. & Van Sumere, C. F. (1980). Phytochemistry 19, 651.CrossRefGoogle Scholar
Pierpoint, W. S. (1969 a). Biochem. J. 112, 609.CrossRefGoogle Scholar
Pierpoint, W. S. (1969 b). Biochem. J. 112, 619.CrossRefGoogle Scholar
Pierpoint, W. S. (1971). Rep. Rothamsted exp. Stn., part 2, p. 199.Google Scholar
Pirie, N. W. (1975). In Protein Nutritional Quality of Foods and Feeds, part 2, p. 341 [Friedmann, M., editor]. New York: Marcel Dekker.Google Scholar
Pomenta, J. V. & Burns, E. E. (1971). J. Fd Sci. 36, 490.CrossRefGoogle Scholar
Roach, A. G., Sanderson, P. & Williams, D. R. (1967). J. Sci. Fd Agric. 18, 274.CrossRefGoogle Scholar
Robertson, J. A. (1975). Crit. Rev. Fd Sci. Nutr. 6, 201.CrossRefGoogle Scholar
Sabir, M. A., Sosulski, F. W. & Kernan, J. A. (1974). J. Agric. Fd Chem. 22, 572.CrossRefGoogle Scholar
Scharff, R. & Wool, I. G. (1964). Nature, Lond. 202, 604.CrossRefGoogle Scholar
Singleton, V. L. & Kratzer, F. H. (1969). J. Agric. Fd Chem. 17, 497.CrossRefGoogle Scholar
Sodini, G. & Canella, M. (1977). J. Agric. Fd Chem. 25, 822.CrossRefGoogle Scholar
Spies, J. R. & Chambers, D. C. (1949). Analyt. Chem. 21, 1249.CrossRefGoogle Scholar
Synge, R. L. M. (1975). Qualitas Pl. Mater. Veg. 24, 337.Google Scholar
Vithayathil, P. J. & Murphy, G. S. (1972). Nature, New Biol. 236, 101.CrossRefGoogle Scholar