Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T01:24:22.323Z Has data issue: false hasContentIssue false

Protein–energy malnutrition in pregnant rats improves the adaptation of the endocrine pancreas in malnourished offspring and induces insulin resistance after rehabilitation

Published online by Cambridge University Press:  09 March 2007

Jean-Marc Dollet
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U.308, 38 rue Lionnois, 54000 Nancy, France
Bernard Beck
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U.308, 38 rue Lionnois, 54000 Nancy, France
Jean-Pierre Max
Affiliation:
Unité de Recherches sur les Mécanismes de Régulation du Comportement Alimentaire, INSERM U.308, 38 rue Lionnois, 54000 Nancy, France
Gérard Debry
Affiliation:
Département de Nutrition et des Maladies Métaboliques, Université de Nancy I, 54000 Nancy, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In developing countries, malnutrition begins during pregnancy and lactation. Glucose intolerance is a problem of importance during protein-energy malnutrition (PEM). We therefore studied glucose homeostasis in rats weaned from undernourished mothers.

2. On weaning, 156 mde Wistar rats, born from deprived mothers (75 g casein/kg diet), were fed ad lib on either a balanced diet (180 g casein/kg; group DR), or a protein-deficient diet (50 g casein/kg; group DD). At seven time intervals (weeks 0, 1, 3, 5, 8, 16 and 23) twelve rats were weighed, fasted overnight and then decapitated. Blood glucose, plasma insulin (IRI) and glucagon (IRG) levels and pancreatic insulin and glucagon contents were determined.

3. In DR and DD rats blood glucose, which was normal at weaning, dropped in the 1st week and then increased slowly. DR rats were hyperglycaemic from week 16. IRI continually increased during the experiment from near-normal values to hyperinsulinic levels in DR rats; in group DD, it remained stable until week 8 before increasing. IRG, which was very low at weaning, increased to normal levels in the 1st week in group DR; in group DD, it fell slightly during the study. Pancreatic hormone contents were much higher than after normal pregnancy and lactation.

4. We compared these results with those of a previous study with rats born from normal mothers: at weaning in the second experiment the rats were already well adapted to malnutrition. The plasma ratio IRI:IRG in DD rats showed two phases of adaptation: weeks 0–5 when glucose homeostasis did not change and weeks 5–23 when it became increasingly normal. At the end of the experiment DR rats still had a lower body-weight than normal rats but were insulin-resistant.

Type
Clinical and Human Nutrition papers: Other Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Anthony, L. E. & Faloona, G. R. (1974). Metabolism 23, 303306.CrossRefGoogle Scholar
Asplund, K. (1972). Diabetologia 8, 153–159.CrossRefGoogle Scholar
Aubert, R., Suquet, J. P. & Lemonnier, D. (1980). Journal of Nutrition 110, 649661.CrossRefGoogle Scholar
Beck, B., Dollet, J. M., Max, J. P. & Debry, G. (1982). Reproduction, Nutrition, Développement 22, 841849.CrossRefGoogle Scholar
Beck, B., Dollet, J. M., Max, J. P. & Debry, G. (1983). Nutrition Research 3, 743748.CrossRefGoogle Scholar
Bedi, K. S., Birzgalis, H. R., Mahon, M., Smart, J. L. & Wareham, A. C. (1982). British Journal of Nutrition 47, 417431.CrossRefGoogle Scholar
Brasel, J. A. (1980). Pediatric Research 14, 12991303.CrossRefGoogle Scholar
Coward, W. A., Paul, A. A. & Prentice, A. M. (1984). Federation Proceedings 43, 24322437.Google Scholar
Crnic, L. S. & Chase, H. P. (1978). Journal of Nutrition 108, 17551760.CrossRefGoogle Scholar
Dollet, J. M., Beck, B., Villaume, C.Max, J. P. & Debry, G. (1985). Journal of Nutrition 115, 15811588.CrossRefGoogle Scholar
Gabr, M. (1981). World Review of Nutrition and Dietetics 36, 9099.CrossRefGoogle Scholar
Girard, J. R. (1981). Ciba Foundation Symposium 86, 234250.Google Scholar
Heard, C. R. C. & Stewart, R. J. C. (1971). Hormones 2, 4064.Google Scholar
James, W. P. & Coore, H. G. (1970). American Journal of Clinical Nutrition 23, 386389.CrossRefGoogle Scholar
Jolicoeur, L., Asselin, J. & Morisset, J. (1980). Biochemical Research 1, 482488.Google Scholar
Jones, A. J. & Friedman, M. I. (1982). Science 215, 15181519.CrossRefGoogle Scholar
Kolterman, O. G., Insel, J., Saekow, M. & Olefsky, J. (1986). Journal of Clinical Investigation 65, 12721284.CrossRefGoogle Scholar
Lipson, L. G., Bobrycki, V. A., Bush, M. J., Tietjen, G. E. & Yoon, A. (1981). Endocrinology 102, 620624.CrossRefGoogle Scholar
Milner, R. D. (1971). Pediatric Research 5, 3339.CrossRefGoogle Scholar
Parson, P. L., Shrader, R. E. & Zeman, F. J. (1976). Journal of Nutrition 106, 392404.CrossRefGoogle Scholar
Pimstone, B. L. (1976). Clinical Endocrinology 5, 7995.Google Scholar
Ravelli, G. P., Stein, Z. A. & Susser, R. W. (1976). New England Journal of Medicine 295, 349353.CrossRefGoogle Scholar
Rengers, S. D. & Zeman, F. J. (1983). Nutrition Reports International 27, 463473.Google Scholar
Robinson, H. M. & Seakins, A. (1982). Pediatric Research 16, 10111015.CrossRefGoogle Scholar
Sarles, H., Lahaie, R., Dollet, J. M., Beck, B., Michel, R. & Debry, G. (1987). Digestive Disease and Sciences 32, 520528.CrossRefGoogle Scholar
Tafari, N., Naeye, R. L. & Gobezie, A. (1980). British Journal of Obstetrics and Gynaecology 87, 222226.CrossRefGoogle Scholar
Unger, R. H. (1971). Diabetes 20, 834838.CrossRefGoogle ScholarPubMed
Weinkove, C., Weinkove, E. A. & Pimstone, B. L. (1976). Clinical Science and Molecular Medicine 50, 153163.Google Scholar
Zamenhof, S. & Van Marthens, E. (1982). Journal of Nutrition 112, 972977.CrossRefGoogle Scholar