Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T02:45:18.378Z Has data issue: false hasContentIssue false

Protein synthesis and growth in the gastrointestinal tract of the young preruminant lamb

Published online by Cambridge University Press:  09 March 2007

D. Attaix
Affiliation:
INRA et CNRS U.A. 04 11 63, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
M. Arnal
Affiliation:
INRA et CNRS U.A. 04 11 63, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In Expt 1, fractional synthesis rates (FSR) of tissue protein were measured along the gastrointestinal tract (GIT) of six 1-week-old, milk-fed lambs by using a large amount of L-[3,4(n)-3H]valine.

2. In Expt 2, eighteen lambs were used to determine the fractional growth rate (FGR) of gastrointestinal tissue protein.

3. FSRMinimum(Min) and FSRMaximum(Max) were calculated assuming plasma or tissue homogenate free valine specific radioactivity was representative of the valine precursor pool for protein synthesis. There were no significant differences between FSR(Min) and FSR(Max) in any gastrointestinal tissue of lambs used in Expt 1 (P > 0.05). FSR gradually and significantly (P > 0.05) increased from the oesophagus (FSR(Max)26.5%/d). reticulo-rumen (30.1%/d), omasum (41.0%/d) and abomasum (56.1%/d) to small intestine (87.5%/d), and then declined significantly (P < 0.05) towards the caecum (45.2%/d) and the colon (38.4%/d). No significant differences were observed between FSR in the duodenum, jejunum or ileum (P > 0.05).

4. FGR ranged from 2,6%/d in the oesophagus to 8,7%/d in the omasum. The ratio, FGR:FSR, which reflected the efficiency of protein deposition, was at a maximum in the stomachs and caecum and at a minimum in the small intestine.

5. The relative contribution of the oesophagus, stomachs, small intestine and large intestine to GIT protein synthesis was 1, 13, 76 and 10% respectively. The GIT accounted for approximately 11.5% of whole-body protein synthesis.

Type
General Nutrition papers
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Alpers, D. H. (1972). Journal of Clinical Investigation 51, 167173.Google Scholar
Alpers, D. H. & Kinzie, J. L. (1973). Gastroenterology 64, 471496.Google Scholar
Arnal, M., Ferrara, M. & Fauconneau, G. (1978). Proceedings 29th Meeting European Association for Animal Production, Stockholm, Sweden, pp. 16.Google Scholar
Arnal, M, Obled, C. & Attaix, D. (1983). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 31, vol. 1, pp. 117136. [Arnal, M., Pion, R. and Bonin, D., editors]. Paris: INRA Publications.Google Scholar
Attaix, D., Manghebati, A., Grizard, J. & Arnal, M. (1986 a).Biochimica et Biophysica Acta 882, 389397.Google Scholar
Attaix, D., Manghebati, A., Grizard, J. & Arnal, M. (1986 b). Diabète et Meétabolisme, Paris 12, Abstract 107.Google Scholar
Attaix, D., Meslin, J. C. & Combe, E. (1984). Nutrition Reports International 29, 689697.Google Scholar
Bénévent, M. (1971). Annales de Biologie Animale, Biochimie, Biophysique 11, 539.Google Scholar
Bryan, L., Buttery, P. J. & Fisher, C. (1983). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 31, vol. II, pp. 5356 [Pion, R., Arnal, M. and Bonin, D., editors]. Paris: INRA Publications.Google Scholar
Buttery, P. J., Beckerton, A. & Lubock, M. H. (1977). In Protein Metabolism and Nutrition, European Association for Animal Production Publication no. 22, pp. 3234 [Tamminga, S., editor]. Wageningen: Pudoc.Google Scholar
Church, D. C. (1969). Digestive Physiology and Nutrition of Ruminants, vol. 1, pp. 2738, pp. 5984. Corvallis: Oregon State University.Google Scholar
Combe, E., Attaix, D. & Arnal, M. (1979). Annales de Recherches Vétérinaires 10, 436439.Google Scholar
Comline, R. S., Silver, I. A. & Steven, D. H. (1968). In Handbook of Physiology, vol. v, Sect. 6, pp. 26472671 [Code, C. F., editor]. Baltimore: American Physiological Society.Google Scholar
Davis, S. R., Barry, T. N. & Hughson, G. A. (1981). British Journal of Nutrition 46, 409419.Google Scholar
Garlick, P. J. (1980). In Comprehensive Biochemistry, vol. 19B, part I, pp. 77152 [Florkin, M. and Stotz, E. H., editors]. Amsterdam:Elsevier.Google Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.Google Scholar
Glass, D. S. & Woods, T. L. (1971). InLiquid Scintillation Counting, vol. I, pp.7995 [Dyer, A., editor]. London: Heyden.Google Scholar
Goldspink, D. F., Lewis, S. E. M. & Kelly, F. J. (1984). Biochemical Journal 217, 527534.Google Scholar
Hirschfield, J. S. & Kern, F. Jr (1969). Journal of Clinical Investigation 48, 12241229.Google Scholar
James, W. P. T., Garlick, P. J. & Millward, D. J. (1971). Gut 12, 495496.Google Scholar
Lewis, S. E. M., Kelly, F. J. & Goldspink, D. F. (1984). Biochemical Journal 217, 517526.CrossRefGoogle Scholar
Lobley, G. E., Milne, V., Lovie, J. M.Reeds, P. J. & Pennie, K. (1980). British Journal of Nutrition 43, 491502.Google Scholar
MacDonald, M. L. & Swick, R. W. (1981). Biochemical Journal 194, 811819.Google Scholar
McNurlan, M. A. & Garlick, P. J. (1980). Biochemical Journal 186, 381383.Google Scholar
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). Biochemical Journal 178, 373379.Google Scholar
Mann, H. B. & Whitney, D. R. (1947). Annals of Mathematical Statistics 18, 5060.Google Scholar
Muramatsu, T., Coates, M. E., Hewitt, D., Salter, D. N. & Garlick, P. J. (1983). British Journal of Nutrition 49, 453462.Google Scholar
Patureau-Mirand, P., Debras, E. & Prugnaud, J. (1986). Reproduction, Nutrition, Développement 26, 677682.Google Scholar
Reeds, P. J., Haggarty, P., Wahle, K. W. J. & Fletcher, J. M. (1982). Biochemical Journal 204, 393398.Google Scholar
Sakata, T. & Yajima, T. (1984). Quarterly Journal of Experimental Physiology 69, 639648.Google Scholar
Schaefer, A. L., Davis, S. R. & Hughson, G. A. (1986). British Journal of Nutrition 56, 281288.Google Scholar
Schaefer, A. L. & Krishnamurti, C. R. (1984). Growth 48, 309320.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1971).Méthodes Statistiques, 6th ed. Paris: Association de Coordination Agricole.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Fransisco: W. H. Freeman.Google Scholar
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985 a). British Journal of Nutrition 53, 8795.Google Scholar
Southon, S., Livesey, G., Gee, J. M. & Johnson, I. T. (1985 b). British Journal of Nutrition 53, 595603.Google Scholar
Stobo, I. J. F., Roy, J. H. B. & Gaston, H. J. (1966). British Journal of Nutrition 20, 171188.Google Scholar
Villette, Y. & Theriez, M. (1981). Annales de Zootechnie 30, 151168.Google Scholar
Warner, R. G. & Flatt, W. P. (1965). In Physiology Of Digestion in the Ruminant, pp. 2438 [Dougherty, R. W., Allen, R. S., Burroughs, W., Jacobson, N. L. and McGilliard, A. D., editors]. Washington, DC: Butterworths.Google Scholar