Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:56:33.451Z Has data issue: false hasContentIssue false

Protein and arginine requirements for maintenance and nitrogen gain in four teleosts

Published online by Cambridge University Press:  09 March 2007

V. Fournier
Affiliation:
Laboratoire de Nutrition des Poissons, Unité mixte INRA-IFREMER, Unité d'Hydrobiologie, B.P. 3, 64310 St Pée sur Nivelle, France
M. F. Gouillou-Coustans
Affiliation:
Laboratoire de Nutrition des Poissons, Unité mixte INRA-IFREMER, Centre de Brest, B.P. 70. 29280 Plouzané, France
R. Métailler
Affiliation:
Laboratoire de Nutrition des Poissons, Unité mixte INRA-IFREMER, Centre de Brest, B.P. 70. 29280 Plouzané, France
C. Vachot
Affiliation:
Laboratoire de Nutrition des Poissons, Unité mixte INRA-IFREMER, Unité d'Hydrobiologie, B.P. 3, 64310 St Pée sur Nivelle, France
M. J. Guedes
Affiliation:
Faculdade de Ciências do Porto, CIIMAR, Pr. Gomes Teixeira, 4099-002 Porto, Portugal
F. Tulli
Affiliation:
Dipartimento di Scienze della Produzione Animale, via S. Mauro 2, 33010 Pagnacco (UD), Italy
A. Oliva-Teles
Affiliation:
Faculdade de Ciências do Porto, CIIMAR, Pr. Gomes Teixeira, 4099-002 Porto, Portugal
E. Tibaldit
Affiliation:
Dipartimento di Scienze della Produzione Animale, via S. Mauro 2, 33010 Pagnacco (UD), Italy
S. J. Kaushik*
Affiliation:
Laboratoire de Nutrition des Poissons, Unité mixte INRA-IFREMER, Unité d'Hydrobiologie, B.P. 3, 64310 St Pée sur Nivelle, France
*
*Corresponding author: Dr S. J. Kaushik, fax +33 5 59 54 51 52, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Besides being an indispensable amino acid for protein synthesis, arginine (Arg) is also involved in a number of other physiological functions. Available data on the quantitative requirement for Arg in different teleosts appear to show much variability. So far, there are very limited data on the maintenance requirements of indispensable amino acids (IAA) in fish. In the present study, we compared N and Arg requirements for maintenance and growth of four finfish species: rainbow trout (Oncorhynchus mykiss), turbot (Psetta maxima), gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Groups of fish having an initial body weight close to 5–7 g were fed semi-purified diets containing graded levels of N (0 to 8 % DM) and Arg (0 to 3 % DM) over 4 to 6 weeks. For each species, N and Arg requirements for maintenance and for growth were calculated regressing daily N gain against daily N or Arg intakes. N requirement for maintenance was estimated to be 37·8, 127·3, 84·7 and 45·1 mg/kg metabolic body weight per d and 2·3, 2·2, 2·6 and 2·5 g for 1 g N accretion, in rainbow trout, turbot, gilthead seabream and European seabass respectively. The four species studied appear to have very low or no dietary Arg requirements for maintenance. Arg requirement for g N accretion was calculated to be 0·86 g in rainbow trout and between 1·04–1·11 g in the three marine species. Turbot required more N for maintenance than the other three species, possibly explaining its reputedly high overall dietary protein requirement. Data suggest a small but sufficient endogenous Arg synthesis to maintain whole body N balance and differences between freshwater and marine species as regards Arg requirement. It is worth verifying this tendency with other IAA.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2002

References

Association of Official Analytical Chemists (1984) Official Methods of Analysis, 12th ed., Washington, DC: Association of Official Analytical Chemists.Google Scholar
Birkett, L (1969) The nitrogen balance in plaice, sole and perch. Journal of Experimental Biology 50, 375386.CrossRefGoogle ScholarPubMed
Buentello, JA & Gatlin, DM III (2000) The dietary requirement of channel catfish (Ictalurus punctatus) is influenced by endogenous synthesis of arginine from glutamic acid. Aquaculture 188, 311321.CrossRefGoogle Scholar
Buentello, JA & Gatlin, DM III (2001) Plasma citrulline and arginine kinetics in juvenile channel catfish, Ictalurus punctatus, given oral gabaculine. Fish Physiology and Biochemistry 24, 105112.CrossRefGoogle Scholar
Caceres-Martinez, C, Cadena-Roa, M & Métailler, R (1984) Nutrition requirements of turbot (Scophthalmus maximus L.): 1- A preliminary study of protein and lipid utilisation. Journal of the World Mariculture Society 15, 191202.Google Scholar
Cadena-Roa, M (1983) Etude Expérimentale de l'Alimentation de la Sole (Solea vulgaris Q.) en Élevage Intensif (Experimental study of sole (Solea vulgaris Q.) nutrition in intensive rearing conditions). Phd Thesis, Université de Bretagne Occidentale.Google Scholar
Chiu, YN, Austic, RE & Rumsey, GL (1986) Urea cycle activity and arginine formation in rainbow trout (Oncorhynchus mykiss). Journal of Nutritrion 116, 16401650.Google Scholar
Cho, CY, Kaushik, SJ & Woodward, B (1992) Dietary arginine requirement of young rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology 102A, 211213.CrossRefGoogle Scholar
Cowey, CB (1994) Amino acid requirements of fish: a critical appraisal of present values. Aquaculture 124, 111.CrossRefGoogle Scholar
Cowey, CB (1995) Protein and amino acid requirements: A critique of methods. Journal of Applied Ichthyology 11, 199204.CrossRefGoogle Scholar
Cowey, CB, Pope, JA, Adron, JW & Blair, A (1972) Studies on the nutrition of marine flatfish. The protein requirement of plaice (Pleuronectes platessa). British Journal of Nutrititon 28, 447456.CrossRefGoogle ScholarPubMed
Cowey, CB & Walton, MJ (1989) Intermediary metabolism. In Fish Nutrition, 2nd ed., pp. 259329 [Halver, JE, editor]. San Diego, CA: Academic Press.Google Scholar
Dépêche, J, Gilles, R, Daufresne, S & Chiapello, H (1979) Urea content and urea production via the ornithine-urea cycle pathway during the ontogenic development of two teleosts fishes. Comparative Biochemistry and Physiology 63A, 5156.CrossRefGoogle Scholar
Dias, J, Alvarez, MJ, Diez, A, Arzel, J, Corraze, G, Bautista, JM & Kaushik, SJ (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161, 169186.CrossRefGoogle Scholar
Dosdat, A, Metailler, R, Tetu, N, Servais, E, Chartois, H, Huelvan, C & Desbruyeres, E (1995) Nitrogenous excretion in juvenile turbot, Scophthalmus maximus (L.), under controlled conditions. Aquaculture Research 26, 639650.CrossRefGoogle Scholar
Dreanno, C (1994) Etude du Rôle des Apports Protéiques, Lipidiques et Glucidiques chez le Juvénile de Turbot (Scophthalmus maximus L.) (Dietary Protein, Lipid and Carbohydrate Requirements in Juvenile Turbot (Scophthalmus maximus L.)). Mémoire de DEA, France: Université de Rennes.Google Scholar
Fuller, MF, McWilliam, R, Wang, TC & Giles, LR (1989) The optimum dietary amino acid pattern for growing pigs. 2. Requirements for maintenance and for tissue protein accretion. British Journal of Nutrition 62, 255267.CrossRefGoogle ScholarPubMed
Hidalgo, F & Alliot, E (1988) Influence of water temperature on protein requirement and protein utilization in juvenile seabass (Dicentrarchus labrax). Aquaculture 72, 115129.Google Scholar
Huggins, AK, Skutsch, G & Baldwin, E (1969) Ornithine urea cycle enzymes in teleostean fish. Comparative Biochemistry and Physiology 28, 587602.Google Scholar
ITCF (1991) STAT-ITCF. Paris: 4th Services des Études Statistiques.Google Scholar
Jobling, M (1981) Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice (Pleuronectes platessa L.). Journal of Fish Biology 18, 8796.CrossRefGoogle Scholar
Kaushik, SJ (1995) Protein nutrition and metabolism in fish. In Protein Metabolism and Nutrition, pp. 4756 [Nunes, AF, Portugal, AV, Costa, JP and Ribeiro, JR, editors]. Portugal: INIA.Google Scholar
Kaushik, SJ (1998) Nutritional bioenergetics for the estimation of wastes in non-salmonids. Aquatic Living Resources 11, 211217.Google Scholar
Kaushik, SJ & Luquet, P (1984) Relationship between protein intake and voluntary energy intake as affected by body weight with an estimation of maintenance needs in rainbow trout. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 51, 5769.Google Scholar
Kaushik, SJ, Luquet, P & Blanc, D (1981) Usefulness of feeding protein and non-protein calories apart in studies on energy-protein interrelationships in rainbow trout. Annales de Zootechnie 30, 311.CrossRefGoogle Scholar
Lall, SP, Kaushik, SJ, LeBail, PY, Keith, R, Anderson, JS & Plisetskaya, E (1994) Quantitative arginine requirement of Atlantic salmon (Salmo salar) reared in sea water. Aquaculture 124, 1325.CrossRefGoogle Scholar
Lupatsch, I, Kissil, GW, Sklan, D & Pfeffer, E (1998) Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquaculture Nutrition 4, 165173.CrossRefGoogle Scholar
Luquet, P & Sabaut, JJ (1974) Nutrition Azotée et Croissance chez la Daurade et la Truite (Dietary Nitrogen Utilisation and Growth in Gilthead Seabream and Rainbow Trout). Actes de Colloques. Colloques sur l'Aquaculture. Brest 1: 243–253. Brest, France: Ifremer.Google Scholar
Mackie, AM & Adron, JW (1978) Identification of inosine and inosine 5'-monophosphate as the gustatory feeding stimulants for the turbot Scophthalmus maximus. Comparative Biochemistry and Physiology 60A, 7983.CrossRefGoogle Scholar
Mambrini, M & Kaushik, SJ (1995 a) Indispensable amino acid requirements of fish: correspondence between quantitative data and amino acids profiles of tissue proteins. Journal of Applied Ichthyology 11, 240247.CrossRefGoogle Scholar
Mambrini, M & Kaushik, SJ (1995 b) Effect of temperature on sulfur amino acid requirements for maintenance and growth of juvenile rainbow trout. In Protein Metabolism and Nutrition, pp. 117122 [Nunes, AF, Portugal, AV, Costa, JP and Ribeiro, JR, editors]. Portugal: INIA.Google Scholar
Mercer, LP (1982) The quantitative nutrient-response relationship. Journal of Nutrition 112, 560566.CrossRefGoogle ScholarPubMed
Mommsen, TP (2001) Paradigms of growth in fish. Comparative Biochemistry Physiology 129B, 207219.CrossRefGoogle Scholar
Nutrition Research Council (1993) Nutrient Requirements of Domestic Animals. In Nutrient requirements of fish. Washington, DC: National Academy Press.Google Scholar
Peres, H & Oliva-Teles, A (1999) Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 170, 337348.Google Scholar
Reeds, PJ (1988) Nitrogen metabolism and protein requirements. In Comparative Nutrition, pp. 5272 [Blaxter, K and MacDonald, I, editors]. London: John Libbey and Co. Ltd.Google Scholar
Rodehutscord, M, Becker, A, Pack, M & Pfeffer, E (1997) Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. Journal of Nutrition 127, 11661175.Google Scholar
Rodehutscord, M, Jacobs, S, Pack, M & Pfeffer, E (1995) Response of rainbow trout (Oncorhynchus mykiss) growing from 50 to 170 g to supplements of either L-arginine or L-threonine in a semipurified diet. Journal of Nutrition 125, 970975.Google ScholarPubMed
Rodehutscord, M, Mandel, S & Pfeffer, E (1994) Reduced protein content and use of wheat gluten in diets for rainbow trout: Effects on water loading with N and P. Journal of Applied Ichthyology 10, 271273.CrossRefGoogle Scholar
Santinha, PJM, Gomes, EFS & Coimbra, JO (1996) Effects of protein level of the diet on digestibility and growth of gilthead sea bream, Sparus auratus L. Aquaculture Nutrition 2, 8187.CrossRefGoogle Scholar
Servais, F (1994) Caractérisation des Rejets Azotés Engendrés par le Jeune Turbot, Scophthalmus maximus, Comparison avec d'autres Espèces d'Intérêt Aquacole (Nitrogen Excretion in Juvenile Turbot and Other Cultured Fishes). Angers, France: Ecole Supérieure d'Agriculture d'Angers 93p.Google Scholar
Swanson, DR (1990) Somatomedin C and arginine: implicit connections between mutually isolated literatures. Perspectives in Biology and Medicine 33, 157186.CrossRefGoogle ScholarPubMed
Tacon, AGJ & Cowey, CB (1985) Protein and amino acid requirements. In Fish Energetics: New Perspectives, pp. 155183 [Tytler, P and Calow, P, editors]. London: Croom Helm.CrossRefGoogle Scholar
Tibaldi, E, Tulli, F & Lanari, D (1994) Arginine requirement and effect of different dietary arginine and lysine levels for fingerlings sea bass (Dicentrarchus labrax). Aquaculture 127, 207218.Google Scholar
Visek, WJ (1986) Arginine needs, physiological state and usual diets: a reevaluation. Journal of Nutrition 116, 3646.Google Scholar
Wilson, RT (1989) Amino acids and proteins. In Fish Nutrition, 2nd ed., pp. 111159 [Halver, JE, editor]. San Diego, CA: Academic Press.Google Scholar
Wu, G & Morris, SM (1998) Arginine metabolism: nitric oxide and beyond. Biochemical Journal 336, 117.CrossRefGoogle ScholarPubMed