Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T02:20:54.607Z Has data issue: false hasContentIssue false

Production within the rumen and removal from the blood-stream of volatile fatty acids in sheep given a diet deficient in cobalt

Published online by Cambridge University Press:  24 July 2007

Hedeey R. Marston
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
Shirley H. Allex
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
R. M. SMITH
Affiliation:
Division of Nutritional Biochemistry, Commonwealth Scientific and Industrial Research Organization, University of Adelaide, South Austral. 5000, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The production and metabolism of volatile fatty acids were studied in sheep offered a cobalt-deficient diet.

2. The molar proportions of acetic (60%), propionic (26%) and butyric (14%) acids in the rumen fluids of sheep given the Co-deficient diet, but whose stores of vitamin B12 were adequate, were similar before and after administration of an oral supplement of Co.

3. In pair-fed sheep, one member of which was vitamin B12-deficient and the other (control) treated with vitamin B12 parenterally, the concentrations after feeding of both total and individual volatile fatty acids in the blood tended to be higher in deficient than in control sheep.

4. Following injection of the respective salts of individual volatile fatty acids into the blood-stream, formate clearance was apparently not affected, whereas that of acetate was slightly, and that of propionate very significantly, delayed in vitamin B12-deficient sheep compared with pair-fed control animals.

5. Acetate metabolism was retarded in the presence of propionate; the effect was greater in deficient than in pair-fed control sheep.

6. The hypothesis is advanced that it is the failure to metabolize propionate at the normal rate that leads to the progressive loss of appetite in vitamin B12-deficient sheep.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Annison, E. F. (1954). Biochem. J. 58, 670.CrossRefGoogle Scholar
Annison, E. F. (1965). In Physiology of Digestion in the Ruminant p. 185 [Dougherty, R. W. editor.]. Washington, DC: Buttenvorths.Google Scholar
Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F., Leng, R. A., Lindsay, L. B. & White, R. R. (1963). Biochem. J. 88, 248.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1962 a). Biochem. J. 84, 546.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1962 b). Biochem. J. 84, 552.CrossRefGoogle Scholar
Armstrong, D. G. (1965). In Physiology of Digestion in the Ruminant p. 272 [Dougherty, R. W. editor]. Washington DC: Butterworths.Google Scholar
Ralch, C. C. & Campling, R. C. (1962). Nutr. Abstr. Rev. 32, 669.Google Scholar
Bensadoun, A., Paladines, O. L. & Reid, J. T. (1962). J. Dairy Sci. 45, 1203.CrossRefGoogle Scholar
Cannata, J. J. B., Focesi, A. Jr., Mazumder, R., Warner, R. C. & Ochoa, S. (1965). J. bio. Chem. 240, 3249.CrossRefGoogle Scholar
Davis, C. L., Brown, R. E. & Staubus, J. R. (1960). J. Dairy Sci. 43, 1783.CrossRefGoogle Scholar
Dawbarn, M. C., Hine, D. C. & Smith, J. (1958). Aust. J. exp. Bid. med. Sci. 36, 541.CrossRefGoogle Scholar
Dobson, A. (1961). In Digestive Physiology and Nutrition of the Ruminant p. 68 [Lewis, D., editor]. London: Butterworths.Google Scholar
Dowden, D. R. & Jacobson, D. R. (1960). Nature, Lond. 188, 148.CrossRefGoogle Scholar
Egan, A. R. (1965). Aust. J. agric. Res. 16, 473.CrossRefGoogle Scholar
Egan, A. R. (1966). Aust. J. agric. Res. 17, 741.CrossRefGoogle Scholar
Gray, F. V. (1948). J. exp. Bid. 25, 135.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F., Rodda, H. J. & Weller, R. A. (1951). Nature, Lond. 167, 954.CrossRefGoogle Scholar
Holder, J. M. (1963). Nature, Lond. 200, 1074.CrossRefGoogle Scholar
James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
Jarrett, I. G. (1948). J. Coun. scient. ind. Ra. Aust. 21, 311.Google Scholar
Knox, W. E. & Mehler, A. H. (1950). J. biol. Chem. 187, 419.CrossRefGoogle Scholar
Leng, R. A. & Annison, E. F. (1963). Biochem. J. 86, 319.CrossRefGoogle Scholar
Marston, H. R. (1970). Br. J. Nutr. 24, 615.CrossRefGoogle Scholar
Marston, H. R. & Allen, S. H. (1970). Biochem. J. 116, 681.CrossRefGoogle Scholar
Marston, H. R., Allen, S. H. & Smith, R. M. (1961). Nature, Lond. 190, 1085.CrossRefGoogle Scholar
Montgomery, M. J., Schultz, L. H. & Baumgardt, B. R. (1963). J. Dairy Sci. 46, 1380.CrossRefGoogle Scholar
Pennington, R. J. (1957). Biochem. J. 65, 534.CrossRefGoogle Scholar
Pennington, R. J. & Appleton, J. M. (1958). Biochem. J. 69, 119.CrossRefGoogle Scholar
Rook, J. A. F., Balch, C. C. & Campling, R. C. (1960). Proc. Nutr. Soc. 19, i.Google Scholar
Sakami, W. (1949). J. biol. Chem. 178, 519.CrossRefGoogle Scholar
Siekevitz, P. & Greenberg, D. M. (1949). J. biol. Chem. 180, 845.CrossRefGoogle Scholar
Smith, R. M. & Marston, H. R. (1970 a). Br. J. Nutr. 24, 857.CrossRefGoogle Scholar
Smith, R. M. & Marston, H. R. (1970 b). Br. J. Nutr. 24, 879.CrossRefGoogle Scholar
Somers, M. (1969). Aust. J. exp. Bid. med. Sci. 47, 219.CrossRefGoogle Scholar
Stokstad, E. L. R., Webb, R. E. & Shah, E. (1966). J. Nutr. 88, 225.CrossRefGoogle Scholar
Weston, R. H.. (1966). Aust. J. agric. Res. 17, 933.CrossRefGoogle Scholar