Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:58:57.651Z Has data issue: false hasContentIssue false

Production rates of volatile fatty acids in the minke whale(Balaenoptera acutorostrata) forestomach

Published online by Cambridge University Press:  09 March 2007

Monica Alterskjær Olsen
Affiliation:
Department of Arctic Biology and Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
Svein Disch Mathiesen
Affiliation:
Department of Arctic Biology and Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Minke whales (Balaenopteva acutorostruta) have developed a compartmentalized stomach system, which includes a non-glandular forestomach containing high concentrations of indigenous bacteria. The forestomach contents serve as microbial substrate, and samples were collected from fiveadult minke whales eating capelin (Mallotus villosus) and crustaceans (Thysanoessa sp.). Chemical analysis of the forestomach contents revealed that they consisted of crude protein (650 (SD 58) g/kg DM), lipid (330 (SD77) g/kg DM) and water-soluble carbohydrates (53.3 (SD 7·3) g/kg DM). The contribution of energy from volatile fatty acids (VFA), produced by forestomach bacterial fermentation, to the total energy budget was estimated. The forestomach concentration ofVFA ranged from 13·2 to 68·5 mmol/l, and the pH was 5·83 (SD 0·41). VFA pool size ranged from 72·8 to 638·1 mmol and represented from 0·169 to 2·107 kJ/kg live weight (W)0·75 Maximal recorded forestomach VFA production rate was 1694 mmol/h in one capelin-eating minke whalewith 42·6 litres of forestomach fluid. Energy from VFA produced by forestomach fermentation represented 6–107 kJ/kg w0·75 per d, which accounts for only 0·9–16·9% of the average daily energy expenditure of minke whales. This study suggests that the bacterial fermentation in the minke whale forestomach varies, depending on the volume and the quality of substrate available, inlinencing fermentation rates and concentration of VFA. Due to the small relative size of the forestomach, the contribution of VFA to the daily energy requirement in minke whales would be of less importance than in ruminants even when assuming the same production rate of VFA as in a ruminant.

Type
VFA production in minke whales
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Aagnes, T. H., Sørmo, W. & Mathiesen, S. D. (1995). Ruminal microbial digestion in free-living, in captive lichenfed, and in starved reindeer (Rangifer tarandus tarandus) in winter. Applied and Environmental Microbiology 61 583591.CrossRefGoogle ScholarPubMed
Allo, A. A., Oh, J. H., Longhurst, W. M. & Connolly, G. E. (1973). VFA production in the digestive systems of deer and sheep. Journal of Wildlife Management 37, 202211.CrossRefGoogle Scholar
Annison, E. F. & Armstrong, D. G. (1970). Volatile fatty acid metabolism and energy supply. In Physiology of Digestion and Metabolism in the Ruminant, pp. 422437. Newcastle upon Tyne: Oriel Press.Google Scholar
Anonymous (1950). International Convention for the Regulation of Whaling. First Report of the International Commission of Whaling, Appendix I, pp. 914. London: International Commission on Whaling.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism in Ruminants. London: Hutchinson Scientific and Technical.Google Scholar
Blix, A. S. & Folkow, L. P. (1995). Daily energy expenditure in free living minke whales. Acta Physiologica Scandinavica 153, 6166.CrossRefGoogle ScholarPubMed
Carroll, E. J. & Hungate, R. E. (1954). The magnitude of the microbial fermentation in thebovine rumen. Applied Microbiology 2, 205214.CrossRefGoogle Scholar
Folkow, L. P. & Blix, A. S. (1992). Metabolic rates of minke whales (Balaenoptera acutorostrata). Acta Physiologica Scandinavica 146, 141150.CrossRefGoogle ScholarPubMed
Furuholmen, A. M., Winefordner, J. D., Knapp, F. W. & Dennison, R. A. (1964). The qualitative analysis of glucose and fructose in potatoes. Journal of Agricultural and Food Chemistry 12, 109112.CrossRefGoogle Scholar
Gasaway, W. C. & Coady, J. W. (1974). Review of energy requirements and rumen fermentation in moose and other ruminants. Le Naturaliste Canadien 101, 227262.Google Scholar
Haug, T., Gjøsæter, H., Lindstrm, U. & Nilssen, K. T. (1995). Diet and food availability for north-east Atlantic minke whales (Balaenoptera acutorosrata), during the summer of 1992. ICES Journal of Marine Science 52, 7786.CrossRefGoogle Scholar
Herwig, R. P. & Staley, J. T. (1986). Anaerobic bacteria from the digestive tract of NorthAtlantic fin whales(Balaenoptera physalus). FEMS Microbial Ecology 38, 361371.CrossRefGoogle Scholar
Herwig, R. P., Staley, J. T., Nerini, M. K. & Braham, H. W. (1984). Baleen whales: preliminary evidence for forestomach microbial fermentation. Applied and Environmental Microbiology 47, 421423.CrossRefGoogle ScholarPubMed
Horwitz, W. (1980). Official Methods of Analysis of the Association of Analytical Chemists, 13th ed. Washington: AOAC.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Hungate, R. E., Mah, R. A. & Simesen, M. (1961). Rates of production of individual volatile fatty acids in the rumen of lactating cows. Applied Microbiology, 9, 554561.CrossRefGoogle ScholarPubMed
Losnegard, N., Bere, B. & Larsen, T. (1979). Norwegian Directorate of Fisheries Report no. 1. Bergen, Norway: Norwegian Directorate of Fisheries. (In Norwegian).Google Scholar
McInerney, M. J. (1988). Anaerobic hydrolysis and fermentation of fats and proteins. In Biology of Anaerobic Microorganisms [Zehnder, A. J. B. editor]. New York: John Wiley & Sons.Google Scholar
Mathiesen, S. D., Aagnes, T. H., Sørmo, W., Nordøy, E. S., Blix, A. S. & Olsen, M. A. (1995). Digestive physiology of minke whales. In Marine Biology IV. Proceedings of an International Symposium on the Biology of Marine Mammals in the Northeast Atlantic, pp. 351359 [Blix, A. S., Walløe, L. & Ulltang, ø editors]. Amsterdam: Elsevier Publisher B. V.Google Scholar
Nordøy, E. S. & Blix, A. S. (1992). Diet of minke whales in the Northeastern Atlantic. Reports of the International Whaling Commission 42, 393398.Google Scholar
Nordøy, E. S., Sørmo, W. & Blix, A. S. (1993). In vitro digestibility of different prey species of minke whales(Balaenoptera acutorostrata). British Journal of Nutrition 70, 485489.CrossRefGoogle ScholarPubMed
Olsen, M. A., Aagnes, T. H. & Mathiesen, S. D. (1994 a). Digestion of herring by indigenous bacteria in the minke whale forestomach. Applied and Environmental Microbiology 60, 44454455.CrossRefGoogle ScholarPubMed
Olsen, M. A., Nordey, E. S., Blix, A. S. & Mathiesen, S. D. (1994 b). Functional anatomy of the gastrointestinal system of Northeastern Atlantic minke whales (Balaenoptera acutorostrata). Journal of Zoology 234, 5574.CrossRefGoogle Scholar
Orpin, C. G., Mathiesen, S. D., Greenwood, Y. & Blix, A. S. (1985). Seasonal changes in the ruminal microflora of the high-arctic Svalbard reindeer (Rangifer tarandusplatyrhynchus). Applied and Environmental Microbiology 50, 144151.CrossRefGoogle Scholar
Smith, D. & Grotelueschen, R. D. (1966). Carbohydrates in grasses. I. Sugar and fructosan composition of the stem bases of several northern-adapted grasses at seed maturity. Crop Science 6, 263266.CrossRefGoogle Scholar
Stevens, C. E. (1973). Transport across rumen epithelium. In Transport Mechanisms in Epithelia, pp. 404426 [Ussing, H. H. and Thorn, N. A. editors]. Copenhagen: Munksgaard.Google Scholar
Stewart, W. E., Stewart, D. G. & Schultz, L. H. (1958). Rates of volatile fatty acid production in the bovine rumen. Journal of Animal Science 17, 723–136.CrossRefGoogle Scholar
Tilley, M. A. & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Journal of the British Grassland Society 18, 104111.CrossRefGoogle Scholar
van Hoven, W., Prins, R. A. & Lankhorst, A. (1981). Fermentative digestion in the African elephant. South African Journal of Wildlge Research 11, 1886.Google Scholar
Wardrop, I. D. & Coombe, J. B. (1960). The post-natal growth of the visceral organs of thelamb. Journal of Agricultural Science 54, 140143.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1968). The digestion of pasture plants by sheep. I. Ruminal production of volatile fatty acids by sheep offered diets of ryegrass and forage oats. Australian Journal of Agricultural Research 19, 419432.CrossRefGoogle Scholar
White, R. G. & Staaland, H. (1983). Ruminal volatile fatty acid production as an indicatorof forage quality in Svalbard reindeer. Acta Zoologica Fennica 175, 6163.Google Scholar