Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T09:57:44.856Z Has data issue: false hasContentIssue false

A preliminary study on the action of cassava on thyroid iodine metabolism in rats

Published online by Cambridge University Press:  09 March 2007

M Van Der velden
Affiliation:
Department of Radioisotopes, Saint Piewe Hospital, Free University of Brussels, Brussels, Belgium
J Kinthaert
Affiliation:
Department of Radioisotopes, Saint Piewe Hospital, Free University of Brussels, Brussels, Belgium
S. Orts
Affiliation:
Department of Nutrition, CEMUBAC-IRSAC, Lwiro, Kivu, Republic of Zaire
A. M Ermans
Affiliation:
Department of Radioisotopes, Saint Pierre Hospital, Free University of Brussels, Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The ingestion of cassava (Manihot esculenta Crantz) by rats increased the plasma thiocyanate concentration and reduced the thyroid iodine content and the plasma protein-bound iodine.

2. Administration of increasing doses of thiocyanate raised the plasma thiocyanate concentration and reduced the thyroid iodine content and the plasma protein-bound iodine.

3. In producing these effects, the daily ingestion of 10 g cassava root containing 1·6 mg cyanide was approximately equivalent to a daily intake of about 1–2 mg thiocyanate.

4. These results suggest that the antithyroid action of cassava is the result of the production of thiocyanate by the rat from cyanide arising from the cyanogenic glucosides present in this food.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Aldridge, W. N. (1945). Analyst, Lond. 70, 474.Google Scholar
Barker, S. B., Humphrey, J. M. & Soley, M. H. (1951). J. clin. Invest. 30, 55.CrossRefGoogle Scholar
Bisset, F. H., Clapp, R. C., Coburn, R. A., Ettlinger, M. G. & Long, L. Jr (1969). Phytochemistry 8, 2235.CrossRefGoogle Scholar
Coop, I. E. & Blakley, R. L. (1949). N.Z. Jl Sci. Tech. 31A, 1.Google Scholar
Delange, F. & Ermans, A. M. (1971). Am. J. clin. Nutr. 24, 1354.CrossRefGoogle Scholar
Ekpechi, O. L. (1967). Br. J. Nutr. 21, 537.Google Scholar
Ermans, A. M., Kinthaert, J., Delcroix, C. & Collard, J. (1968). J. clin. Endocr. Metab. 28, 169.Google Scholar
Ermans, A. M., Thilly, C., Vis, H. L. & Delange, F. (1969). In Endemic Goiter [Stanbury, J. B., editor]. Washington, DC: Pan American Health Organization.Google Scholar
Fiedler, H. & Wood, J. L. (1956). J. biol. Chem. 222, 387.Google Scholar
Gmelin, R. & Virtanen, A. I. (1960). Acta chem. scand. 14, 507.CrossRefGoogle Scholar
Himwich, W. A. & Saunders, J. P. (1948). Am. J. Physiol. 153, 348.CrossRefGoogle Scholar
Lang, K. (1933). Biochem. Z. 259, 243.Google Scholar
Michajlowski, N. & Langer, P. (1959). Z. Physiol. Chem. 312, 26.Google Scholar
Osuntokun, B. O. (1970). Br. J. Nutr. 24, 797.CrossRefGoogle Scholar
Osuntokun, B. O., Monekosso, G. L. & Wilson, J. (1969). Br. med. J. i, 547.CrossRefGoogle Scholar
Remington, J. (1937). J. Nutr. 13, 223.Google Scholar
Rosenthal, O. (1948). Fedn Proc. Fedn Am. Sacs exp. Biol. 7, 181.Google Scholar
Schwimmer, J. (1960). Acta chem. scand. 14, 1439.CrossRefGoogle Scholar
Van Etten, C. H., Daxenbichler, M. E. & Wolff, I. A. (1969). J. agric. Fd Chem. 17, 483.CrossRefGoogle Scholar
Wolff, J. (1964). Physiol. Rev. 44, 45.Google Scholar