Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T02:03:50.309Z Has data issue: false hasContentIssue false

Potassium supplementation, serum immunoreactive insulin concentrations and glucose tolerance in protein-energy malnutrition

Published online by Cambridge University Press:  25 March 2008

M. D. Mann
Affiliation:
Departments of Child Health and Medicine, University of Cape Town Medical School, Observatory, Cape Town, South Africa
Dorothy J. Becker
Affiliation:
Departments of Child Health and Medicine, University of Cape Town Medical School, Observatory, Cape Town, South Africa
B. L. Pimstone
Affiliation:
Departments of Child Health and Medicine, University of Cape Town Medical School, Observatory, Cape Town, South Africa
J. D. L. Hansen
Affiliation:
Departments of Child Health and Medicine, University of Cape Town Medical School, Observatory, Cape Town, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The serum immunoreactive insulin (IRI) concentrations, and glucose disappearance rate-constants after intravenous glucose administration were measured on admission and during recovery in children suffering from protein-energy malnutrition (PEM).

2. A high potassium intake resulted in a considerable increase in the serum IRI levels early in the treatment period. There was a definite relationship between potassium depletion and many measurements of insulin secretion.

3. The results are consistent with the hypothesis that impaired insulin release in children suffering from PEM is partly the result of potassium depletion.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Alleyne, G. A. O., Millward, D. J. & Scullard, G. H. (1970). J. Pediat. 76, 75.CrossRefGoogle Scholar
Alleyne, G. A. O., Trust, P. M., Flores, H. & Robinson, H. (1972). Br. J. Nutr. 27, 585.CrossRefGoogle Scholar
Anderson, J. W., Herman, R. H. & Newcomer, K. L. (1969). Am. J. clin. Nutr. 22, 1589.CrossRefGoogle Scholar
Ashkar, F. S. & Katims, R. B. (1970). Diabetes 19, 377.Google Scholar
Baig, H. A. & Edozien, J. C. (1965). Lancet ii, 662.CrossRefGoogle Scholar
Becker, D. J., Pimstone, B. L., Hansen, J. D. L. & Hendricks, S. (1971). Diabetes 20, 542.CrossRefGoogle Scholar
Becker, D. J., Pimstone, B. L., Hansen, J. D. L., MacHutchon, B. & Drysdale, A. (1972). Am. J. clin. Nutr. 25, 499.CrossRefGoogle Scholar
Beckman Instrument Co. Inc. (1967). Technical Manual RM-TB-011. Fullerton, California, USA: Beckman Instrument Co. Inc.Google Scholar
Conn, J. W. (1965). New Engl. J. Med. 273, 1135.CrossRefGoogle Scholar
Garrow, J. S. (1965). W. Indian med. J. 14, 73.Google Scholar
Grodsky, G. M. & Bennett, L. L. (1966). Diabetes 15, 910.CrossRefGoogle ScholarPubMed
Grodsky, G. M. & Foresham, P. H. (1966). A. Rev. Physiol. 28, 347.CrossRefGoogle Scholar
Hales, C. N. & Milner, R. D. G. (1968). J. Physiol., Lond. 194, 725.CrossRefGoogle Scholar
Hansen, J. D. L. (1956). S. Afr. J. Lab. clin. Med. 2, 206.Google Scholar
Hoffman, W. S. (1937). J. biol. Chem. 120, 51.CrossRefGoogle Scholar
Ikkos, D. & Luft, R. (1957). Acta endocr., Copenh. 25, 312.Google Scholar
James, W. P. T. & Coore, H. G. (1970). Am. J. clin. Nutr. 23, 386.CrossRefGoogle Scholar
Mondon, C. E., Burton, S. D., Grodsky, G. M. & Ishida, T. (1968). Am. J. Physiol. 215, 779.CrossRefGoogle Scholar
Morgan, C. R. & Lazarow, A. (1963). Diabetes 12, 115.CrossRefGoogle Scholar
Sagild, U., Andersen, V. & Andreasen, P. B. (1961). Acta med. scand. 169, 243.CrossRefGoogle Scholar
Siegel, S. (1956). Non-parametric Statistics for the Behavioural Sciences. New York: McGraw-Hill.Google Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill.Google Scholar
Wolfson, W. Q., Cohn, G., Calvary, E. & Ichiba, F. (1948). Am. J. clin. Path. 18, 723.CrossRefGoogle Scholar