Published online by Cambridge University Press: 09 March 2007
Elevated levels of coagulation factor VII activity (FVIIc) are associated with increased risk of CHD. FVIIc is strongly determined by two polymorphisms (R353Q and 0/10 base pairs (bp)) and plasma triacylglycerol (TAG) concentrations. The Q and 10 bp polymorphisms show strong linkage disequilibrium and have been associated with lower levels of fasting FVII, but there has been little investigation of the effect of these genotypes on the postprandial FVII metabolism. The present study demonstrated that fasting activated factor VII (FVIIa) and factor VII antigen (FVIIag) levels were significantly lower in the heterozygotes carrying the Q and 10 bp alleles (n 12), than in the R/0 bp homozygotes (n 12) (43·0 (SE 4·8) v. 23·9 (SE 6·5) mU/ml and 85·7 (SE 5·4) v. 71·6 (SE 7·5) % respectively). During postprandial lipaemia there was a significant increase in FVIIa in R/0 bp homozygotes but not in the heterozygotes carrying the Q and 10 bp alleles. The proportion of FVIIa (FVIIa : FVIIag) increased in the homozygotes but not in the heterozygotes (2·04 (SE 0·35) v. 1·20 (SE 0·26) respectively). Therefore possession of the relatively common Q and 10 bp alleles is not associated with postprandial activation of FVII, which may in turn have a protective effect against CHD.