Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T10:16:52.210Z Has data issue: false hasContentIssue false

Polyphenol levels in human urine after intake of six different polyphenol-rich beverages

Published online by Cambridge University Press:  08 March 2007

Hideyuki Ito
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan
Marie-Paule Gonthier
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France
Claudine Manach
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France
Christine Morand
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France
Louise Mennen
Affiliation:
UMR INSERM U557/INRA/CNAM, ISTNA-CNAM, Paris, France
Christian Rémésy
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France
Augustin Scalbert*
Affiliation:
Unité des Maladies Métaboliques et Micronutrients, INRA, 63122, Saint-Genès-Champanelle, France
*
*Corresponding author: Dr Augustin Scalbert, fax +33 4 73 62 46 38, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dietary polyphenols are suggested to participate in the prevention of CVD and cancer. It is essential for epidemiological studies to be able to compare intake of the main dietary polyphenols in populations. The present paper describes a fast method suitable for the analysis of polyphenols in urine, selected as potential biomarkers of intake. This method is applied to the estimation of polyphenol recovery after ingestion of six different polyphenol-rich beverages. Fifteen polyphenols including mammalian lignans (enterodiol and enterolactone), several phenolic acids (chlorogenic, caffeic, m-coumaric, gallic, and 4-O-methylgallic acids), phloretin and various flavonoids (catechin, epicatechin, quercetin, isorhamnetin, kaempferol, hesperetin, and naringenin) were simultaneously quantified in human urine by HPLC coupled with electrospray ionisation mass-MS (HPLC-electrospray-tandem mass spectrometry) with a run time of 6 min per sample. The method has been validated with regard to linearity, precision, and accuracy in intra- and inter-day assays. It was applied to urine samples collected from nine volunteers in the 24 h following consumption of either green tea, a grape-skin extract, cocoa beverage, coffee, grapefruit juice or orange juice. Levels of urinary excretion suggest that chlorogenic acid, gallic acid, epicatechin, naringenin or hesperetin could be used as specific biomarkers to evaluate the consumption of coffee, wine, tea or cocoa, and citrus juices respectively.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2005

References

Adam, A, Crespy, V, Levrat-Verny, MA, Leenhardt, F, Leuillet, M, Demigne, C & Rémésy, C (2002) The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J Nutr 132, 19621968.CrossRefGoogle ScholarPubMed
Adlercreutz, H, Fotsis, T, Heikkinen, R, Dwyer, JT, Goldin, BR, Gorbach, SL, Lawson, AM & Setchell, KD (1981) Diet and urinary excretion of lignans in female subjects. Med Biol 59, 259261.Google ScholarPubMed
Adlercreutz, H, Fotsis, T, Heikkinen, R, Dwyer, JT, Woods, M, Goldin, BR & Gorbach, SL (1982) Excretion of the lignans enterolactone and enterodiol and of equol in omnivorous and vegetarian postmenopausal women and in women with breast cancer. Lancet ii, 12951299.CrossRefGoogle Scholar
Adlercreutz, H, Höckerstedt, K, Bannwart, C, Bloigu, S, Hamalainen, E, Fotsis, T & Ollus, A (1987) Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens, and on sex hormone binding globulin (SHBG). J Steroid Biochem 27, 11351144.CrossRefGoogle ScholarPubMed
Akaza, H, Miyanaga, N, Takashima, N et al. , (2002) Is daidzein non-metabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration. Jpn J Clin Oncol 32, 296300.CrossRefGoogle ScholarPubMed
Arts, ICW & Hollman, PCH (2005) Polyphenols and disease risk in epidemiological studies. Am J Clin Nutr 81, Suppl. 1, 317S325S.CrossRefGoogle Scholar
Azuma, K, Ippoushi, K, Nakayama, M, Ito, H, Higashio, H & Terao, J (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J Agric Food Chem 48, 54965500.CrossRefGoogle ScholarPubMed
Baba, S, Osakabe, N, Yasuda, A, Natsume, M, Takizawa, T, Nakamura, T & Terao, J (2000) Bioavailability of (-)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radic Res 33, 635641.CrossRefGoogle ScholarPubMed
Begum, AN, Nicolle, C, Mila, I, Lapierre, C, Nagano, K, Fukushima, K, Heinonen, SM, Adlercreutz, H, Rémésy, C & Scalbert, A (2004) Dietary lignins are precursors of mammalian lignans in rats. J Nutr 134, 120127.CrossRefGoogle ScholarPubMed
Booth, AN, Emerson, OH, Jones, FT & DeEds, F (1957) Urinary metabolites of caffeic and chlorogenic acids. J Biol Chem 229, 5159.CrossRefGoogle ScholarPubMed
Bourne, LC & Rice-Evans, CA (1998) Urinary detection of hydroxycinnamates and flavonoids in humans after high dietary intake of fruit. Free Radic Res 4, 429438.CrossRefGoogle Scholar
Caccetta, RA-A, Croft, KD, Beilin, LJ & Puddey, IB (2000) Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am J Clin Nutr 71, 6774.CrossRefGoogle Scholar
Choudhury, R, Srai, SK, Debnam, E & Rice-Evans, CA (1999) Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration. Free Radic Biol Med 27, 278286.CrossRefGoogle ScholarPubMed
Clifford, MN (2000) Chlorogenic acids and other cinnamates - nature, occurence and dietary burden. J Sci Food Agric 79, 362372.3.0.CO;2-D>CrossRefGoogle Scholar
Couteau, D, McCartney, AL, Gibson, GR, Williamson, G & Faulds, CB (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90, 873881.CrossRefGoogle ScholarPubMed
Cremin, P, Kasim-Karakas, S & Waterhouse, AL (2001) Lc/es-ms detection of hydroxycinnamates in human plasma and urine. J Agric Food Chem 49, 17471750.CrossRefGoogle ScholarPubMed
Del Rio, D, Stewart, AJ, Mullen, W, Burns, J, Lean, ME, Brighenti, F & Crozier, A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52, 28072815.CrossRefGoogle ScholarPubMed
DuPont, MS, Bennett, RN, Mellon, FA & Williamson, G (2002) Polyphenols from alcoholic apple cider are absorbed, metabolized and excreted by humans. J Nutr 132, 172175.CrossRefGoogle ScholarPubMed
Franke, AA, Custer, LJ, Wilkens, LR, Le Marchand, LL, Nomura, AM, Goodman, MT & Kolonel, LN (2002) Liquid chromatographic-photodiode array mass spectrometric analysis of dietary phytoestrogens from human urine and blood. J Chromatogr, 777B, 4559.Google Scholar
Gil-Izquierdo, A, Gil, MI, Tomas-Barberan, FA & Ferreres, F (2003) Influence of industrial processing on orange juice flavanone solubility and transformation to chalcones under gastrointestinal conditions. J Agric Food Chem 51, 30243028.CrossRefGoogle ScholarPubMed
Goldberg, DM, Yan, J & Soleas, GJ (2003) Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin Biochem 36, 7987.CrossRefGoogle ScholarPubMed
Gonthier, M-P, Cheynier, V, Donovan, JL, Manach, C, Morand, C, Mila, I, Lapierre, C, Rémésy, C & Scalbert, A (2003 a) Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J Nutr 133, 461467.CrossRefGoogle Scholar
Gonthier, M-P, Rios, LY, Verny, M-A, Rémésy, C & Scalbert, A (2003 b) A novel liquid chromatography-electrospray ionization mass spectrometry method for the quantification in urine of microbial aromatic acid metabolites derived from dietary polyphenols. J Chromatogr 789B, 247255.Google Scholar
Gonthier, M-P, Verny, MA, Besson, C, Rémésy, C & Scalbert, A (2003 c) Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. J Nutr 133, 18531859.CrossRefGoogle ScholarPubMed
Gutteridge, JMC & Halliwell, B (1994) Antioxidants in Nutrition, Health, and Disease. Oxford: Oxford University Press.Google Scholar
Heinonen, S, Nurmi, T, Liukkonen, K, Poutanen, K, Wahala, K, Deyama, T, Nishibe, S & Adlercreutz, H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49, 31783186.CrossRefGoogle ScholarPubMed
Hertog, MGL, Hollman, PCH & Van de Putte, B (1993) Content of potentially anticarcinogenic flavonoids in tea infusions, wine and fruit juices. J Agric Food Chem 41, 12421246.CrossRefGoogle Scholar
Hodgson, JM, Morton, LW, Puddey, IB, Beilin, LJ & Croft, KD (2000) Gallic acid metabolites are markers of black tea intake in humans. J Agric Food Chem 48, 22762280.CrossRefGoogle ScholarPubMed
Horn-Ross, PL, Barnes, S, Kirk, M, Coward, L, Parsonnet, J & Hiatt, RA (1997) Urinary phytoestrogen levels in young women from a multiethnic population. Cancer Epidemiol Biomarkers Prev 6, 339345.Google ScholarPubMed
Hulten, K, Winkvist, A, Lenner, P, Johansson, R, Adlercreutz, H & Hallmans, G (2002) An incident case-referent study on plasma enterolactone and breast cancer risk. Eur J Nur 41, 168176.CrossRefGoogle ScholarPubMed
Kilkkinen, A, Stumpf, K, Pietinen, P, Valsta, LM, Tapanainen, H & Adlercreutz, H (2001) Determinants of serum enterolactone concentration. Am J Clin Nutr 73, 10941100.CrossRefGoogle ScholarPubMed
Lampe, JW, Gustafson, DR, Hutchins, AM, Martini, MC, Li, S, Wahala, K, Grandits, GA, Potter, JD & Slavin, JL (1999) Urinary isoflavonoid and lignan excretion on a Western diet: relation to soy, vegetable, and fruit intake. Cancer Epidemiol Biomarkers Prev 8, 699707.Google ScholarPubMed
Manach, C, Morand, C, Gil-Izquierdo, A, Bouteloup-Demange, C & Rémésy, C (2003) Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur J Clin Nutr 57, 235242.CrossRefGoogle ScholarPubMed
Manach, C, Scalbert, A, Morand, C, Rémésy, C & Jimenez, L (2004 a) Polyphenols - food sources and bioavailability. Am J Clin Nutr 79, 727747.CrossRefGoogle ScholarPubMed
Manach, C, Williamson, G, Morand, C, Scalbert, A & Rémésy, C (2004 b) Bioavailability and bioefficacy of polyphenols in humans -I- a review of 97 bioavailability studies. Am J Clin Nutr 230S242S.Google Scholar
Maskarinec, G, Singh, S, Meng, L & Franke, AA (1998) Dietary soy intake and urinary isoflavone excretion among women from a multiethnic population. Cancer Epidemiol Biomarkers Prev 7, 613619.Google ScholarPubMed
Morand, C, Manach, C, Donovan, JL & Rémésy, C (2001) Preparation and characterization of flavonoid metabolites present in biological samples. Meth Enzymol 335, 115121.CrossRefGoogle ScholarPubMed
Nardini, M, Cirillo, E, Natella, F & Scaccini, C (2002) Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 50, 57355741.CrossRefGoogle ScholarPubMed
Nielsen, SE, Freese, R, Cornett, C & Dragsted, LO (2000) Identification and quantification of flavonoids in human urine samples by column-switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Anal Chem 72, 15031509.CrossRefGoogle ScholarPubMed
Nielsen, SE, Freese, R, Kleemola, P & Mutanen, M (2002) Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol Biomarkers Prev 11, 459466.Google ScholarPubMed
Olthof, MR, Hollman, PCH, Buijsman, MNCP, Van Amelsvoort, JMM & Katan, MB (2003) Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. J Nutr 133, 18061814.CrossRefGoogle ScholarPubMed
Olthof, MR, Hollman, PCH & Katan, MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131, 6671.CrossRefGoogle ScholarPubMed
Rechner, AR, Kuhnle, G, Bremner, P, Hubbard, GP, Moore, KP & Rice-Evans, CA (2002) The metabolic fate of dietary polyphenols in humans. Free Radic Biol Med 33, 220235.CrossRefGoogle ScholarPubMed
Scalbert, A, Manach, C, Morand, C, Rémésy, C & Jiménez, L (2005) Dietary polyphenols and the prevention of diseases. In Crit Rev Food Sci Nutr 45, 287306.CrossRefGoogle ScholarPubMed
Scalbert, A & Williamson, G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130, 2073S2085S.CrossRefGoogle ScholarPubMed
Shahidi, F & Naczk, M (2003) Phenolics in Food and Nutraceuticals, 2nd ed. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Shahrzad, S, Aoyagi, K, Winter, A, Koyama, A & Bitsch, I (2001) Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J Nutr 131, 12071210.CrossRefGoogle ScholarPubMed
Shahrzad, S & Bitsch, I (1998) Determination of gallic acid and its metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr 705B, 8795.CrossRefGoogle Scholar
US Department of Agriculture, (2001) Guidance for industry: bioanalytical method validation. http://www.fda.gov/cder/guidance/4252fnl.htmGoogle Scholar