Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T11:20:01.082Z Has data issue: false hasContentIssue false

Phosphorus depletion in sheep and the ratio of calcium to phosphorus in the diet with reference to calcium and phosphorus absorption

Published online by Cambridge University Press:  09 March 2007

V. R. Young
Affiliation:
Departments of Animal Husbandry and Veterinary Pathology, University of California, Davis, California, USA
W. P. C. Richards
Affiliation:
Departments of Animal Husbandry and Veterinary Pathology, University of California, Davis, California, USA
G. P. Lofgreen
Affiliation:
Departments of Animal Husbandry and Veterinary Pathology, University of California, Davis, California, USA
J. R. Luick
Affiliation:
Departments of Animal Husbandry and Veterinary Pathology, University of California, Davis, California, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A total of sixty-three wether lambs, 4–6 months old, were fed on diets low in phosphorus and adequate in calcium (0.072–0.073% P, 0.38–0.40% Ca) or adequate in both (0.38–0.40% P, 0.40% Ca) for 134 or 142 days. 2. Concentrations of serum inorganic P and Ca and alkaline phosphatase activity were studied during the depletion period. Bones were taken for histological analysis at the end of the 142 days. 3. After the preliminary depletion period, a metabolism study was conducted in which the effects of previous P depletion and dietary Ca:P ratio upon Ca and P absorption, as measured by isotope techniques, were studied. 4. Histological analysis of bones showed the presence of lesions characteristic of late rickets in some sheep and of severe osteoporosis in others. 5. A wide dietary Ca:P ratio had no apparent effect on P absorption when P intake was adequate. The availability of P was lowered by a diet deficient in P with a wide Ca:P ratio. 6. Previous P depletion resulted in enhanced P absorption during the first 11.5 days after an increased intake of P, but this effect was not shown during days 14–21 after the increase. 7. Ca absorption was reduced by giving a diet low in P and was increased when the intake of P was raised. 8. The response to wide dietary Ca:P ratios by ruminants and non-ruminants is reviewed, and a hypothesis, based upon a knowledge of the intestinal reaction of these species, is offered for the finding that ruminants tolerate wider dietary Ca:P ratios than non-ruminant species.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Association of Official Agricultural Chemists (1960). Official Methods of Analysis, 9th ed. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Aubert, J.-P., Bronner, F. & Richelle, L. J. (1963). J. clin. Invest. 42, 885.CrossRefGoogle Scholar
Benzie, D., Boyne, A. W., Dalgarno, A. C., Duckworth, J., Hill, R. & Walker, D. M. (1960). J. agric. Sci., Camb. 54, 202.CrossRefGoogle Scholar
Bethke, R. M., Steenbock, H. & Nelson, M. T. (19231924). J. biol. Chem. 58, 71.CrossRefGoogle Scholar
Borgström, B., Dahlqvist, A., Lundh, G. & Sjövall, J. (1957). J. clin. Invest. 36, 1521.CrossRefGoogle Scholar
Bronner, F. (1964). In Mineral Metabolism. Vol. 2, part A, ch. 20. [Comar, C. L. and Bronner, F., editors.] New York: Academic Press Inc.Google Scholar
Chandler, P. T. & Cragle, R. G. (1962). Proc. Soc. exp. Biol. Med. 111, 431.CrossRefGoogle Scholar
Davis, G. K. (1963). In The Transfer of Calcium and Strontium across Biological Membranes, pp. 129142. [Wasserman, R. H., editor.] New York: Academic Press Inc.CrossRefGoogle Scholar
Dowe, T. W., Matsushima, J. & Arthaud, V. H. (1957). J. Anim. Sci. 16, 811.CrossRefGoogle Scholar
Ewer, T. K. (1951). Br. J. Nutr. 5, 287.CrossRefGoogle Scholar
Follis, R. H. Jr, Day, H. G. & McCollum, E. V. (1940) J. Nutr. 20, 181.CrossRefGoogle Scholar
Hansard, S. L. & Plumlee, M. P. (1954). J. Nutr. 54, 17.CrossRefGoogle Scholar
Harris, L. E., Bassett, C. F. & Wilke, C. F. (1951). J. Nutr. 43, 153.CrossRefGoogle Scholar
Harris, R. S. (1959). Fedn Proc. Fedn Am. Socs exp. Biol. 18, 1100.Google Scholar
Harrison, H. E. & Harrison, H. C. (1941). J. clin. Invest. 20, 47.CrossRefGoogle Scholar
Harrison, H. E. & Harrison, H. C. (1961). Am. J. Physiol. 201,1007.CrossRefGoogle Scholar
Henry, K. M. & Kon, S. K. (1953). Br. J. Nutr. 7, 147.CrossRefGoogle Scholar
Hill, R. (1963). In World Review of Nutrition and Dietetics. Vol. 3, p. 131. [Bourne, G. H., editor.] New York: Hafner Publishing Co. Inc.Google Scholar
Howland, J. & Kramer, B. (1921). Am. J. Dis. Child. 22, 105.Google Scholar
Huffman, C. F., Robinson, C. S. & Winter, O. B. (1930). J. Dairy Sci. 13 432.CrossRefGoogle Scholar
Jowsey, J. & Gershon-Cohen, J. (1964). Proc. Soc. exp. Biol. Med. 116 437.CrossRefGoogle Scholar
Kay, H. D. (1930). J. biol. Chem. 89, 235.CrossRefGoogle Scholar
Kleiber, M., Smith, A. H., Ralston, N. P. & Black, A. L. (1951). J. Nutr. 45, 253.CrossRefGoogle Scholar
Krieger, C. H. & Steenbock, H. (1940). J. Nutr. 20, 125.CrossRefGoogle Scholar
Lloyd, L. E., Crampton, E. W. & Mowat, D. N. (1961). J. Anim. Sci. 20, 176.CrossRefGoogle Scholar
Lowry, O. H. (1957). In Methods in Enzymology. Vol. 4, P. 371. [Colowick, S. P. & Kaplan, N. O., editors.] New York: Academic Press Inc..Google Scholar
Lucker, C. E. & Lofgreen, G. P. (1961). J. Nutr. 74, 233.CrossRefGoogle Scholar
Luick, J. R., Boda, J. M. & Kleiber, M. (1957). J. Nutr. 61, 597.CrossRefGoogle Scholar
Martin, C. J. & Peirce, A. W. (1934). Bull. Aust. Coun. Sci. Industr. Res. no. 77.Google Scholar
McCollum, E. V., Simmonds, N., Shipley, P. G. & Park, E. A. (1921). J. biol. Chem. 47, 507.CrossRefGoogle Scholar
McHardy, G. J. R. & Parsons, D. S. (1956). Q. Jl exp. Physiol. 41, 398.CrossRefGoogle Scholar
Miller, E. R., Ullrey, D. E., Zutaut, C. L., Baltzer, B. V., Schmidt, D. A., Hoefer, J. A. & Luecke, R. W. (1964). J. Nutr. 82, 34.CrossRefGoogle Scholar
Mills, C. F. & Williams, R. B. (1961). J. Sci. Fd Agric. 12, 592.CrossRefGoogle Scholar
Møllgard, H. (1946). Biochem. J. 40, 589.CrossRefGoogle Scholar
Mraz, F. R. (1961). J. Nutr. 73, 409.CrossRefGoogle Scholar
Phillipson, A. T. & Storry, J. E. (1965). J. Physiol., Lond. 181, 130.CrossRefGoogle Scholar
Rasmussen, H. & DeLuca, H. F. (1963). Ergebn. Physiol. 53, 108.CrossRefGoogle Scholar
Robinson, C. S. & Duncan, C. W. (1931). J. biol. Chem. 92, 435.CrossRefGoogle Scholar
Robison, R. (1923). Biochem. J. 17, 286.CrossRefGoogle Scholar
Rottensten, K. V. (1938). Biochem. J. 32, 1285.CrossRefGoogle Scholar
Schlamowitz, M. & Bodansky, O. (1959). J. biol. Chem. 234, 1433.CrossRefGoogle Scholar
Struthers, P. H. & Sieling, D. H. (1950). Soil Sci. 69, 205.CrossRefGoogle Scholar
Theiler, A. (1931). Vet. Rec. 11, 1143.Google Scholar
Theiler, A., duToit, P. J. & Malan, A. I. (1937). Onderstepoort J. vet. Sci. Anim. Ind. 8, 375.Google Scholar
Thompson, A. (1965). Proc. Nutr. Soc. 24, 81.CrossRefGoogle Scholar
Thompson, A., Hansard, S. L. & Bell, M. C. (1959). J. Anim. Sci. 18, 187.CrossRefGoogle Scholar
Weissberger, L. H. & Nasset, E. S. (19421943). Am. J. Physiol. 138, 149.CrossRefGoogle Scholar
Wilson, H. R. & Wilcox, F. H. (1963). Proc. Soc. exp. Biol. Med. 113, 413.CrossRefGoogle Scholar
Wise, M.B., Ordoveza, A. L. & Barrick, E. R. (1963). J. Nutr. 79, 79.CrossRefGoogle Scholar
Wright, E. (1955). Nuture, Lond. 176, 351.Google Scholar
Young, V. R. (1964). Some aspects of calcium and phosphorus metabolism in sheep, with special reference to the effects of phosphorus depletion and the dietary ca1cium:phosphorus ratio. Thesis, University of California.Google Scholar
Young, V. R., Luick, J. R. & Lofgreen, G. P. (1966). Br. J. Nutr. 20, 727.CrossRefGoogle Scholar