Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T03:00:09.006Z Has data issue: false hasContentIssue false

Partition of oleic acid between the lymph and portal blood in rats having a diverted bile-pancreatic duct

Published online by Cambridge University Press:  09 March 2007

Y. Mathieu
Affiliation:
Département de Nutrition, EA DRED 580, Ecole Nationale Supirieure de BiologieAppliquée à la Nutrition et à I 'Alimentalion (ENS.BANA), Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France
C. Caselli
Affiliation:
Département de Nutrition, EA DRED 580, Ecole Nationale Supirieure de BiologieAppliquée à la Nutrition et à I 'Alimentalion (ENS.BANA), Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France
A. Bernard
Affiliation:
Département de Nutrition, EA DRED 580, Ecole Nationale Supirieure de BiologieAppliquée à la Nutrition et à I 'Alimentalion (ENS.BANA), Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France
H. Carlier
Affiliation:
Département de Nutrition, EA DRED 580, Ecole Nationale Supirieure de BiologieAppliquée à la Nutrition et à I 'Alimentalion (ENS.BANA), Université de Bourgogne, 1 Esplanade Erasme, 21000 Dijon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study examines the suggestion that in the absence of adequate bile and pancreatic juice, which support the absorption from the gut of long-chain fatty acidsinto lymph, the fatty acids are absorbed directly into the portal blood. Oleic acid (18:l) partitioning between lymph and portal blood was investigated in intact and bile- and pancreatic juice-diverted rats. In a first set of experiments, 18: 1 absorption from the gut into lymph and blood was studied by continuous recovery of the mesenteric lymph for 6 h and mesenteric portal venous blood for 1 h. In a second set of experiments, esterification processes were investigated by study of the mucosal distribution of labelled lipids and by mono- and diacylglycerol acyltransferase (EC 2.3.1.22 and EC 2.3.1.20 respectively) specific activities. In the bile- and pancreatic juice-diverted rats the absorption of labelled 18:l into lymph was significantly reduced during the first 3 h of intraluminal infusion of this substrate. In such rats a compensatory absorption of labelled 18: 1 into mesenteric portal blood was not observed. At 6 h after micellar lipid- mixture infusion, the overload of lipids both in free form and as triacylglycerols persisting in the mucosa paralleled the lower acyltransferase specific activities observed in bile- and pancreatic juice-diverted rats. These studies demonstrate the absence of a previously proposed compensatory absorption of 18: 1 into portal blood when absorption into lymph is impaired by an inadequate supply of bile and pancreatic juice.

Type
Lipid metabolism
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Bennett-Clark, S. (1978). Chylomicron composition during duodenal triglyceride and lecithin infusion. American Journal of Physiology 235, E183–El90.Google Scholar
Bernard, A. & Carlier, H. (1984). Métabolisme intraentérocytaire et absorption par la voie sanguine des acides caprique et oleique chez le rat témoin et traité par l'actidione-cycloheximide. (Enterocyte metabolism and blood absorption of capric and oleic acids in control and actidione-cycloheximide-treated rats.) Reproduction Nutrition Developpement 24, 543556.CrossRefGoogle Scholar
Bernard, A. & Carlier, H. (1991). Absorption and intestinal catabolism of fatty acids in the rat: effect of chain length and unsaturation. Experimental Physiology 76, 445455.Google Scholar
Blomstrand, R. (1955). Transport form of decanoic acid-l-14C in the lymph during intestinal absorption in the rat. Acta Physiologica Scandinavica 34, 6770.Google Scholar
Blomstrand, R., Carlberger, G. & Forsgren, L. (1969). Intestinal absorption and metabolism of 14C-labelled fatty acids in the absence of bile in humans. Acta Chirurgica Scandinavica 135, 329339.Google Scholar
Bloom, B., Chaikoff, I. L. & Reinhardt, W. O. (1951). Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. American Journal of Physiology 166, 451455.CrossRefGoogle ScholarPubMed
Brand, S. J. & Morgan, R. G. H. (1974). Fatty acid uptake and esterification by proximal and distal intestine in bile fistula rats. Biochimica et Biophysica Acta 369, 17.CrossRefGoogle ScholarPubMed
Carlier, H. & Bezard, J. (1975). Electron microscope autoradiographic study of intestinal absorption of decanoic and octanoic acids in the rat. Journal of Cell Biology 65, 383397.CrossRefGoogle ScholarPubMed
Coleman, R. & Bell, R. M. (1976). Triacylglycerol synthesis in isolated fat cells. The Journal of Biological Chemistry 251, 45374543.CrossRefGoogle ScholarPubMed
Delsal, J. L. (1944). Nouveau procéde d'extraction des lipides du sérum par le méthylal. Application aux microdosages du cholestamp;rol total, des phospholipides et des protamp;ines. (New extraction method of serum lipids by methylal. Application to microassays of total cholesterol, phospholipids and proteins.) Bulletin de la Société de Chimie Biologique 26, 99105.Google Scholar
Greenberger, N. J., Rodgers, J. B. & Isselbacher, K. J. (1966). Absorption of medium and long chain triglycerides: factors influencing their hydrolysis and transport. Journal of Clinical Investigation 45, 217227.CrossRefGoogle ScholarPubMed
Grigor, M. R. & Bell, R. M. (1982). Separate monoacylglycerol and diacylglycerol acyltransferases function in intestinal triacylglycerol synthesis. Biochimica et Biophysica Acta 712, 464472.CrossRefGoogle ScholarPubMed
Hoffman, A. G. D. & Kuksis, A. (1982). Relative acylglycerolacyltransferase activities in homogenates of enzymically dispersed rat jejunal villus and crypt cells. Biochimica et Biophysica Acta 710, 5362.Google Scholar
Hyun, S. A., Vahouny, G. V. & Treadwell, C. R. (1967). Portal absorption of fatty acids in lymph- and portal vein-cannulated rats. Biochimica et Biophysica Acta 137, 296305.Google Scholar
Jacquemot, D., Pavero, C., Bernard, A., Caselli, C. & Carlier, H. (1989). Luminal lipid dose, lymph absorption and chylomicron formation. In Premier Congris Eurolipid, Etig, ed., Paris, vol. 2, pp. 875882.Google Scholar
Kayden, H. J. & Medick, M. (1969). The absorption and metabolism of short and long chain fatty acids in puromycin-treated rats. Biochimica et Biophysica Acta 176, 3743.Google Scholar
Kotler, D. P., Shiau, Y.-F. & Levine, G. M. (1980). Effects of luminal contents on jejunal fatty acid esterification in the rat. American Journal of Physiology 238, G414–G418.Google ScholarPubMed
McDonald, G. B., Saunders, D. R., Weidman, M. & Fischer, L. (1980). Portal venous transport of long-chain fatty acids absorbed from rat intestine. American Journal of Physiology 239, G141–G150.Google Scholar
Mansbach, C. M., Arnold, A. & Cox, M. A. (1985). Factors influencing triacylglycerol delivery into mesenteric lymph. American Journal of Physiology 249, G642–G648.Google Scholar
Morgan, R. G . H. (1966). The effect of operation and the method of feeding on the lymphatic transport of fat by bile fistula rats. Quarterly Journal of Experimental Physiology 51, 3341.Google Scholar
O'Doherty, P. J. A., Kakis, G. & Kuksis, A. (1973). Role of luminal lecithin in intestinal fat absorption. Lipids 8, 249255.Google Scholar
Rampone, A. J. (1970). Intestinal absorption of micellar lipid in normal and bile deficient rats. Proceedings of the Society for Experimental Biology and Medicine 135, 666670.CrossRefGoogle ScholarPubMed
Rodgers, J. B. (1969). Assay of acylCoA-monoglyceride acyltransferase from rat small intestine using continuous recording spectrophotometry. Journal of Lipid Research 10, 427432.CrossRefGoogle ScholarPubMed
Rodgers, J. B.(1975). Lipid absorption in bile fistula rats. Lack of a requirement for biliary lecithin. Biochimica et Biophysica Acta 398, 92100.Google Scholar
Rodgers, J. B. & Bochenek, W. (1970). Localization of lipid reesterifying enzymes of the rat small intestine. Effects of jejunal removal on ileal enzyme activities. Biochimica et Biophysica Acta 202, 426435.Google Scholar
Rodgers, J. B., Tandon, R. & Fromm, H. (1972).Acyl-CoA synthetase for long-chain fatty acids in rat small bowel and the influence of diets containing different compositions of fatty acids on intestinal lipid reesterifying enzyme activities. Biochimica et Biophysica Acta 270, 453462.CrossRefGoogle ScholarPubMed
Rodgers, J. B., Tandon, R. & O'Brien, R. J. (1973). Activities of lipid reesterifying enzymes in jejunal microsomes of bile fistula rats. Attempts to correlate enzyme activities with microsomal phospholipid content. Biochimica et Biophysica Acta 326, 341354.Google Scholar
Saunders, D. R. & Dawson, A. M. (1963). The absorption of oleic acid in the bile fistula rat. Gut 4, 254260.CrossRefGoogle ScholarPubMed
Shiau, Y.-F., Levine, G. & Kotler, D. (1978). Effect of pancreatio-biliary secretion and luminal content on intestinal fatty acid esterification. Gastroenterology 74, 1093.Google Scholar
Shiau, Y.-F., Umstetter, C., Kendall, K. & Koldovsky, O. (1979). Development of fatty acid esterification mechanisms in rat small intestine. American Journal of Physiology 237, E399–E403.Google ScholarPubMed
Simmonds, W. J., Redgrave, T. G. & Willix, R. L. S. (1968). Absorption of oleic and palmitic acids from emulsions and micellar solutions. Journal of Clinical Investigation 47, 10151025.Google Scholar
Singh, A., Balint, J. A., Edmonds, R. H. & Rodgers, J. B. (1972). Adaptive changes of the rat small intestine in response to a high fat diet. Biochimica et Biophysica Acta 260, 708715.Google Scholar
Smith, P. K., Krohn, R. I., Hernanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. (1985). Measurement of protein using Bicinchoninic acid. Analytical Biochemistry 150, 7685.Google Scholar
Stahl, E., Shroter, G., Kraft, G. & Renz, R. (1956). Thin-layer chromatography (the method affecting factors and a few examples of applications). Pharmazie 11, 633637.Google Scholar
Tandon, R., Edmonds, R. H. & Rodgers, J. B. (1972). Effect of bile diversion on the lipid-reesterifying capacity of the rat small bowel. Gastroenterology 63, 9901003.Google Scholar
Tso, P., Balint, J. A. & Simmonds, W. J. (1977). Role of biliary lecithin in lymphatic transport of fat. Gastroenterology 73, 13621367.Google Scholar
Tso, P., Kendrick, H., Balint, J. A. & Simmonds, W. J. (1981). Role of biliary phosphatidylcholine in the absorption and transport of dietary triolein in the rat. Gasfroenterology 80, 6065.Google Scholar
Vallot, A., Bernard, A. & Carlier, H. (1985).Influence of the diet on the portal and lymph transport of decanoic acid in rats. Simultaneous study of its mucosal catabolism. Comparative Biochemistry and Physiology 82A, 693699.CrossRefGoogle Scholar