Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T07:29:26.183Z Has data issue: false hasContentIssue false

The origin of urinary aromatic compounds excreted by ruminants

3. The metabolism of phenolic compounds to simple phenols

Published online by Cambridge University Press:  09 March 2007

A. K. Martin
Affiliation:
Hannah Research Institute, Ayr KA6 5HL, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Dietary phenolic cinnamic acids are hydrogenated in the side-chain, demethylated and dehydroxylated in the rumen and are responsible for the large urinary output of benzoic acid by ruminants.

2. Decarboxylation of phenolic acids to simple phenols is another reaction of the intestinal microflora and experiments were made to determine the extent of this reaction in the rumen of sheep.

3. In five experiments phenolic compounds, quinic acid or casein were infused into therumen or abomasum of sheep and increments in urinary outputs of phenolic acids and phenols determined by thin-layer and gas-liquid chromatography.

4. Production of phenols was almost exclusively confined to reactions in the rumen.

5. Rumen administration of phenolic benzoic or phenylacetic acids which contained a 4-hydroxy substituent yielded large increments in urinary phenol outputs. Other phenolic benzoic and phenylacetic acids were not decarboxytated. Rumen decarboxylation of 4-hydroxy-3-phenylpropionic acid did not occur and decarboxylation of 4-hydroxycinnamic acids was slight.

6. Nearly half the tyrosine content of rumen-administered casein was excreted as p-cresol, a decarboxylation product of 4-hydroxyphenylaceticacid, p-Cresol was the principal phenol found in sheepurine.

7. Catechol and phenol were consistently found in sheep urine samples and p-ethylphenol, resorcinol, quinol, 4-methylcatechol, orcinoland pyrogallol were also found when suitable precursors were infused to the rumen.

8. It is concluded that p-cresol is a rumen metabolite of tyrosine. The other phenols found are microbial metabolites of phenolic precursorswhich are either widely distributed in plants such as 4-hydroxybenzoic, protocatechuic andvanillic acids or of more limited distribution such as the orcinol glycosides of some Ericaceous plants.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Bakke, O. M. (1969 a). Scand. J. Gastroenterol. 4, 603.CrossRefGoogle Scholar
Bakke, O. M. (1969 b). J. Nutr. 98, 217.CrossRefGoogle Scholar
Bakke, O. M. (1969 c). J. Nutr. 98, 209.CrossRefGoogle Scholar
Bakke, O. M. (1969 d). Scand. J. Gastroenterol. 4, 419.CrossRefGoogle Scholar
Bakke, O. M. (1970). Acta pharmac. tox. 28, 28.CrossRefGoogle Scholar
Bakke, O. M. & Scheline, R. R. (1969). Analyt. Biochem. 27, 451.CrossRefGoogle Scholar
Balba, M. T. & Evans, W. C. (1977). Biochem. Soc. Trans. 5, 302.CrossRefGoogle Scholar
Balba, M. T. & Evans, W. C. (1980). Biochem. Soc. Trans. 8, 452.CrossRefGoogle Scholar
Bassett, E. G., Sewell, O. K. & White, E. P. (1955). N.Z. J. Sci. Technol. 36, 437.Google Scholar
Bate-Smith, E.-C. (1968). J. Linn. Soc. (Bot.), 60, 325.CrossRefGoogle Scholar
Baumann, E. (1879). Ber. dt. chem. Ges. 12, 1450.CrossRefGoogle Scholar
Bernhardt, F. W. & Zilliken, A. (1959). Archs Biochem. Biophys. 82, 461.Google Scholar
Booth, A. N., Murray, C. W., Jones, F. T. & De Eds, F. (1956). J. biol. Chem. 223, 251.CrossRefGoogle Scholar
Braden, A. W. H., Hart, N. K. & Lamberton, J. A. (1967). Austr. J. agric. Res. 18, 335.CrossRefGoogle Scholar
Bray, H. G., Thorpe, W. V. & White, K. (1950). Biochem. J. 46, 275.CrossRefGoogle Scholar
Brot, N., Smit, S. & Weissbach, H. (1965). Archs Biochem. Biophys. 112, 1.CrossRefGoogle Scholar
Capel, I. D., French, M. R., Millburn, P., Smith, R. L. & Williams, R. T. (1972). Xenobiotica 2, 25.CrossRefGoogle Scholar
Clarke, E. G. C. & Humphreys, D. J. (1971). J. Sci. Fd Agric. 22, 208.CrossRefGoogle Scholar
Curzon, G. (1957). Biochem. J. 66, 27P.Google Scholar
Curzon, G. & Pratt, R. T. C. (1964). Nature, Lond. 204, 383.CrossRefGoogle Scholar
Dacre, J. C. & Williams, R. T. (1968). J. Pharm. Pharmac. 20, 610.CrossRefGoogle Scholar
Drasar, B. S. & Hill, M. J. (1974). Human Intestinal Flora, 1st ed., p. 98. London: Academic Press.Google Scholar
Duran, M., Ketting, D., De Bree, P. K., Van der Heiden, C. & Wadman, S. K. (1973). Clinica chim. Acta 45, 341.CrossRefGoogle Scholar
Durkee, A. B. & Thivierge, P. A. (1977). J. Fd Sci. 42, 551.CrossRefGoogle Scholar
Fuji, K. & Ito, H. (1972). Arnzneimittel-Forsch. 22, 777.Google Scholar
Garton, G. A. & Williams, R. T. (1948). Biochem. J. 43, 206.CrossRefGoogle Scholar
Garton, G. A. & Williams, R. T. (1949). Biochem. J. 44, 234.CrossRefGoogle Scholar
Grant, J. K. (1948). Biochem. J. 43, 523.CrossRefGoogle Scholar
Griffiths, L. A. & Smith, G. E. (1972). Biochem. J. 130, 141.CrossRefGoogle Scholar
Guenzi, W. D. & McCalla, T. M. (1966). Agronomy J. 58, 303.CrossRefGoogle Scholar
Harborne, J. B. (1979). In Herbivores: Their Interaction with Secondary Plant Metabolites, pp. 622, 637 [Rosenthal, G. A. and Janzen, D. H. editors]. New York: Academic Press.Google Scholar
Harborne, J. B. & Simmonds, N. W. (1964). In Biochemistry of Phenolic Compounds, p. 85 [Harborne, J. B. editor]. London: Academic Press.Google Scholar
Harborne, J. B. & Williams, C. A. (1969). Phytochemistry 8, 2223.CrossRefGoogle Scholar
Hartley, R. D. & Jones, E. C. (1977). Phytochemistry 16, 1531.CrossRefGoogle Scholar
Indahl, S. R. & Scheline, R. R. (1973). Xenobiotica 3, 549.CrossRefGoogle Scholar
Kibe, K. & Kagura, S. (1976). J. Sci. Fd. Agric. 27, 726.CrossRefGoogle Scholar
Krishnamurty, H. G., Cheng, K.-J., Jones, G. A., Simpson, F. J. & Watkin, J. E. (1970). Can. J. Microbiol. 16, 759.CrossRefGoogle Scholar
Kuwatsuka, S. & Shindo, H. (1973). Soil Sci. Pl. Nutr. 19, 219.CrossRefGoogle Scholar
Martin, A. K. (1973). Br. J. Nutr. 30, 251.CrossRefGoogle Scholar
Martin, A. K. (1982 a). Br. J. Nutr. 47, 139.CrossRefGoogle Scholar
Martin, A. K. (1982 b). Br. J. Nutr. 47, 155.CrossRefGoogle Scholar
Miller, J. J., Powell, G. M., Olavesen, A. H. & Curtis, C. G. (1973). Biochem. Soc. Trans. 1, 1163.CrossRefGoogle Scholar
Newby, V. K., Sablon, R.-M., Synge, R. L. M., Castelle, K. V. & Van Sumere, C. F. (1980). Phytochemistry 19, 651.CrossRefGoogle Scholar
Parke, D. V. & Williams, R. T. (1953). Biochem. J. 55, 337.CrossRefGoogle Scholar
Peppercorn, M. A. & Goldman, P. (1971). J. Bact. 108, 996.CrossRefGoogle Scholar
Sakata, K. & Ishiyama, S. (1978). J. agric. chem. Soc. Japan 52, 471.Google Scholar
Salomonson, A.-C., Theander, O. & Åman, P. (1978). J. agric. Fd Chem. 26, 830.CrossRefGoogle Scholar
Scheline, R. R. (1966 a). J. Pharm. Pharmac. 18, 664.CrossRefGoogle Scholar
Scheline, R. R. (1966 b). Acta pharmac. tox. 24, 275.CrossRefGoogle Scholar
Scheline, R. R. (1967). Experientia 23, 493.CrossRefGoogle Scholar
Scheline, R. R. (1968 a). Acta pharmac. tox. 26, 189.CrossRefGoogle Scholar
Scheline, R. R. (1968 b). Acta pharmac. tox. 26, 332.CrossRefGoogle Scholar
Scott, F. N., Ward., P. F. V. & Dawson, R. M. C. (1964). Biochem. J. 90, 12.CrossRefGoogle Scholar
Simpson, F. J., Jones, G. A. & Wolin, E. A. (1969). Can. J. Microbiol. 15, 972.CrossRefGoogle Scholar
Smith, A. A. (1961). Nature, Lond. 190, 167.CrossRefGoogle Scholar
Smith, G. A. L. & Sullivan, P. J. (1964). Analyst, Lond. 89, 312.CrossRefGoogle Scholar
Spoelstra, S. F. (1978). Appl. environ. Microbiol. 36, 631.CrossRefGoogle Scholar
Suemitsu, R., Fujita, S.-I., Joshimura, M., Gen, H., Yuasa, A. & Ushijima, J.-I. (1970). Agric. biol. Chem. 34, 957.Google Scholar
Suemitsu, R., Fujita, S.-I. & Matsubara, H. (1965). Agric. biol. Chem. 29, 908.Google Scholar
Suemitsu, R., Fujita, S.-I., Mishima, Y. & Yoshimura, M. (1968). Bull. Chem. Soc. Japan 41, 1381.CrossRefGoogle Scholar
Swain, T (1979). In Herbivores: Their Interaction with Secondary Plant Metabolites, p. 664 [Rosenthal, G. A. and Janzen, D. H. editors]. NewYork: Academic Press.Google Scholar
Tamm, A. & Villako, K. (1971). Scand. J. Gastroenterol. 6, 5.CrossRefGoogle Scholar
Thieme, A. & Winkler, H.-J. (1971). Pharmazie 26, 419.Google Scholar
Tsai, G.-C., Gates, D. M., Ingledow, W. M. & Jones, G. A. (1976). Can. J. Microbiol. 22, 159.CrossRefGoogle Scholar
Von Euler, U. S. & Lishajko, F. (1959). Nature, Lond. 183, 1123.CrossRefGoogle Scholar