Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T17:29:26.308Z Has data issue: false hasContentIssue false

Oral administration of deuterium-labelled polyamines to sucking rat pups: luminal uptake, metabolic fate and effects on gastrointestinal maturation

Published online by Cambridge University Press:  09 March 2007

Bernard Dorhout
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Anet Van Faassen
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Christien M. Van Beusekom
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Anneke W. Kingma
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Elly De Hoog
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Gijs T. Nagel
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Arend Karrenbeld
Affiliation:
Department of Pathology, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
E. Rudy Boersma
Affiliation:
Department of Obstetrics and Gynaecology, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Frits A. J. Muskiet
Affiliation:
Central Laboratory for Clinical Chemistry, Nutrition & Development Unit, University and University Hospital Groningen, Oostersingel 59, PO Box 30.001, 9700 RB Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Non-physiological amounts of oral polyamines have been reported to induce precocious gut maturation in rat pups. The aim of the present study was to investigate organ distribution and metabolic fate of orally administered stable-isotopically labelled polyamines in rat pups. Pups received tetradeuterium-labelled putrescine (Pu-d4; 3 μmol), spermidine (Sd-d4; 5 μmol), spermine (Sp-d4; 3 μmol), or physiological saline twice daily on postnatal days 7–10 or 12–15. They were killed on days 10 and 15. We determined activities of ileal lactase (EC 3.2.1.23), maltase (EC 3.2.1.20), sucrase (EC 3.2.1.48) and diamine oxidase (EC 1.4.3.6) and established villus and crypt lengths. Polyamines and their labelling percentages in organs were determined by GC and mass fragmentography. Treatments did not affect growth rate, but caused lower weights of liver, kidneys and heart. Maltase activity increased, lactase decreased, whereas sucrase and diamine oxidase did not change. Villus and crypt lengths increased. Organ polyamine pools were labelled to different extents. Irrespective of the orally administered polyamine, all organs contained Pu-d4, Sd-d4 and Sp-d4. Administered Pu-d4 and Sd-d4 were recovered mainly as Sd-d4, whereas Sp-d4 was recovered as Sp-d4 and Sd-d4. Total polyamines in a caecum, colon and erythrocytes increased, but increases were only to a minor extent with regard to labelled polyamines. Our data confirm precocious gut maturation by exogenous polyamines. Putrescine appears to be the limiting factor. The exogenous polyamines were distributed among all investigated organs. They are not only used for the synthesis of higher polyamines, but also retroconverted to their precursors. Changes in erythrocyte polyamine contents suggest precocious stimulation of erythropoiesis.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Bardócz, S., Duguid, T. J., Brown, D. S., Grant, G., Pusztai, A., White, A. & Ralph, A. (1995) The importance of dietary polyamines in cell regeneration and growth. British Journal of Nutrition 73, 819828.CrossRefGoogle ScholarPubMed
Biondi, P. A., Simonic, T., Secchi, C. & Ronchi, S. (1984) Sensitive assay for diamine oxidase activity using high-performance liquid chromatography. Journal of Chromatography Biomedical Applications 309, 151155.CrossRefGoogle ScholarPubMed
Buts, J. P., De Keyser, N., De Raedemaeker, L., Collette, E. & Sokal, E. M. (1995) Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. Journal of Pediatric Gastroenterology and Nutrition 21, 4449.Google ScholarPubMed
Buts, J. P., De Keyser, N., Kolanowski, J., Sokal, E. & Van Hoof, F. (1993) Maturation of villus and crypt cell functions in rat small intestine. Digestive Diseases and Sciences 38, 10911098.CrossRefGoogle ScholarPubMed
Capano, G., Bloch, K. J., Schiffrin, E. J., Dascoli, J. A., Israel, E. J. & Harmatz, P. R. (1994) Influence of the polyamine, spermidine, on intestinal maturation and dietary antigen uptake in the neonatal rat. Journal of Pediatric Gastroenterology and Nutrition 19, 3442.Google ScholarPubMed
Dahlqvist, A. (1964) Method for assay of intestinal disaccharidases. Analytical Biochemistry 7, 1825.CrossRefGoogle ScholarPubMed
Dorhout, B., Van Beusekom, C. M., Huisman, M., Kingma, A.W., De Hoog, E., Boersma, E. R. & Muskiet, F. A. J. (1996) Estimation of 24-hour polyamine intake from mature human milk. Journal of Pediatric Gastroenterology and Nutrition 23, 298302.CrossRefGoogle ScholarPubMed
Dufour, C., Dandrifosse, G., Forget, P., Vermesse, F., Romain, N. & Lepoint, P. (1988) Spermine and spermidine induce intestinal maturation in the rat. Gastroenterology 95, 112116.Google Scholar
Garcia, J. F. (1957) Changes in blood, plasma and red cell volume in the male rat, as a function of age. American Journal of Physiology 190, 1924.CrossRefGoogle ScholarPubMed
Garcia, J. F. & Van Dyke, D. C. (1961) Response of rats of various ages to erythropoietin. Proceedings of the Society for Experimental Biology and Medicine 106, 585588.CrossRefGoogle ScholarPubMed
Gonnella, P. A., Siminoski, K., Murphy, R. A. & Neutra, M. R. (1987) Transepithelial transport of epidermal growth factor by absorptive cells of suckling rat ileum. Journal of Clinical Investigation 80, 2232.CrossRefGoogle ScholarPubMed
Harada, E., Hashimoto, Y. & Syuto, B. (1994) Orally administered spermine induces precocious intestinal maturation of macromolecular transport and disaccharidase development in suckling rats. Comparative Biochemistry and Physiology 109A, 667673.CrossRefGoogle Scholar
Hasegawa, H., Nakamura, A., Watanabe, K., Brown, W. R. & Nagura, H. (1987) Intestinal uptake of IgG in suckling rats. Gastroenterology 92, 186191.Google Scholar
Hessels, J., Kingma, A. W., Ferwerda, H., Keij, J., Van den Berg, G. A. & Muskiet, F. A. J. (1989) Microbial flora in the gastrointestinal tract abolishes cytostatic effects of α-difluoromethylornithine in vivo. International Journal of Cancer 43, 11551164.CrossRefGoogle ScholarPubMed
Jansen, G., Muskiet, F. A. J., Schierbeek, H., Berger, R. & Van der Slik, W. (1986) Capillary gas chromatographic profiling of urinary, plasma and erythrocyte sugars and polyols as their trismethylsilyl derivatives, preceded by a simple and rapid prepurification method. Clinica Chimica Acta 157, 277294.CrossRefGoogle Scholar
Jones, E. A. & Waldman, T. (1972) The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. Journal of Clinical Investigation 51, 29162927.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Luk, G. D., Bayless, T. M. & Baylin, S. B. (1980) Diamine oxidase (histaminase). A circulating marker for rat intestinal mucosal maturation and integrity. Journal of Clinical Investigation 66, 6670.CrossRefGoogle ScholarPubMed
Madsen, K. L., Brockway, P. D., Johnson, L. R., Hardin, J. A. & Gall, D. G. (1996) Role of ornithine decarboxylase in enterocyte mitochondrial function and integrity. American Journal of Physiology, Gastrointestinal and Liver Physiology 33, G789G797.CrossRefGoogle Scholar
Martina, W. V., Martijn, E. G., Van der Molen, M., Schermer, J. G. & Muskiet, F. A. J. (1993) β-N-Terminal glycohemoglobins in subjects with common hemoglobinopathies: relation with fructosamine and mean erythrocyte age. Clinical Chemistry 39, 22592265.CrossRefGoogle ScholarPubMed
Muskiet, F. A. J., Muskiet, F. D., Meiborg, G. & Schermer, J. G. (1991) Supplementation of patients with homozygous sickle cell disease with zinc, α-tocopherol, vitamin C, soybean oil, and fish oil. American Journal of Clinical Nutrition 54, 736744.CrossRefGoogle ScholarPubMed
Nsi-Emvo, E., Chaton, B., Foltzer-Jourdainne, C., Gosse, F. & Raul, F. (1996) Premature expression of sucraseisomaltase triggered by corticoid-dependent changes in polyamine metabolism. American Journal of Physiology, Gastrointestinal and Liver Physiology 33, G54G59.CrossRefGoogle Scholar
Osborne, D. L. & Seidel, E. R. (1990) Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. American Journal of Physiology 258, G576G584.Google ScholarPubMed
Pegg, A. E. & McCann, P. P. (1982) Polyamine metabolism and function. American Journal of Physiology 243, C212C221.CrossRefGoogle ScholarPubMed
Pollack, P. F., Koldóvsky, O. & Nishioka, K. (1992) Polyamines in human and rat milk and in infant formulas. American Journal of Clinical Nutrition 56, 371375.CrossRefGoogle ScholarPubMed
Romain, N., Dandrifosse, G., Jeusette, F. & Forget, P. (1992) Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatric Research 32, 5863.CrossRefGoogle ScholarPubMed
Sarhan, S., Knödgen, B. & Seiler, N. (1989) The gastrointestinal tract as polyamine source for tumor growth. Anticancer Research 9, 215224.Google ScholarPubMed
Satink, H. P. W. M., Hessels, J., Kingma, A. W., Van den Berg, G. A., Muskiet, F. A. J. & Halie, M. R. (1989) Microbial influences on urinary polyamine excretion. Clinica Chimica Acta 179, 305314.CrossRefGoogle ScholarPubMed
Seiler, N., Bolkenius, F. N. & Rennert, O. M. (1981) Interconversion, catabolism and elimination of the polyamines. Medical Biology 59, 334346.Google ScholarPubMed
Seiler, N. & Dezeure, F. (1990) Polyamine transport in mammalian cells. International Journal of Biochemistry 22, 211218.CrossRefGoogle ScholarPubMed
Smith, R. G. & Daves, G. D. (1977) Gas chromatography mass spectrometry analysis of polyamines using deuterated analogs as internal standards. Biomedical Mass Spectrometry 4, 146151.CrossRefGoogle ScholarPubMed
Stevens, J. (1986) Applied Multivariate Statistics for the Social Sciences. New Hillside, NJ: LEA.Google Scholar
Van den Berg, G. A., Elzinga, H., Nagel, G. T., Kingma, A. W. & Muskiet, F. A. J. (1984) The catabolism of polyamines in the rat. Polyamines and their non-α-amino acid metabolites. Biochimica et Biophysica Acta 802, 175187.Google ScholarPubMed
Van den Berg, G. A., Kingma, A. W. & Muskiet, F. A. J. (1987) Determination of polyamines in human erythrocytes by capillary gas chromatography with nitrogen–phosphorus detection. Journal of Chromatography Biomedical Applications 415, 2734.CrossRefGoogle ScholarPubMed