Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:44:01.855Z Has data issue: false hasContentIssue false

Opioid peptides encrypted in intact milk protein sequences

Published online by Cambridge University Press:  09 March 2007

Hans Meisel*
Affiliation:
Bundesanstalt für Milchforschung, Institut für Chemie und Physik, Kiel, Germany
R. J. FitzGerald
Affiliation:
Life Science Department, University of Limerick, Limerick, Ireland
*
*Corresponding author: H Meisel, phone +49 431 609 2260, fax +49 431 609 2300, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Opioid agonistic and antagonistic peptides which are inactive within the sequence of the precursor milk proteins can be released and thus activated by enzymatic proteolysis, for example during gastrointestinal digestion or during food processing. Activated opioid peptides are potential modulators of various regulatory processes in the body. Opioid peptides can interact with subepithelial opioid receptors or specific luminal binding sites in the intestinal tract. Furthermore, they may be absorbed and then reach endogenous opioid receptors.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Antila, P, Paakkari, I, Järvinen, A, Mattila, MJ, Laukkanen, M, Pihlanto-Leppälä, A, Mäntsälä, P & Hellman, J (1991) Opioid peptides derived from in-vitro proteolysis of bovine whey proteins. International Dairy Journal 1, 215229.CrossRefGoogle Scholar
Brandsch, M, Brust, P, Neubert, K & Ermisch, A (1994) β-Casomorphins – chemical signals of intestinal transport systems.In β-Casomorphins and Related Peptides: Recent Developments, 207219 [Brantl, V and Teschemacher, H,editors]. Weinheim: VCH.Google Scholar
Brantl, V, Teschemacher, H, Bläsig, J, Henschen, A & Lottspeich, F (1981) Opioid activities of β-casomorphins. Life Sciences 28, 19031909.Google Scholar
Carnie, J, Minter, S, Oliver, S, Perra, F & & Metzlaff, M (1989) Nutritional compositions containing β-casomorphins. UK Patent Application GB 2214810 A.Google Scholar
Chang, KJ, Cuatrecasas, JP, Wei, ET & Chang, JK (1982) Analgesic activity of intracerebroventricular administration of morphiceptin and β-casomorphins: Correlation with the morphine (μ) receptor binding affinity. Life Sciences 30, 15471551.Google Scholar
Chang, KJ, Killian, A, Hazum, E & Cuatrecasas, P (1981) Morphiceptin: a potent and specific agonist for morphine (μ) receptors. Science 212, 7577.CrossRefGoogle ScholarPubMed
Chiba, H, Tani, F & Yoshikawa, M (1989) Opioid antagonist peptides derived from β-casein. Journal of Dairy Research 56, 363366.Google Scholar
Chiba, H & Yoshikawa, M (1986) Biologically functional peptides from food proteins: new opioid peptides from milk proteins.In Protein Tailoring for Food and Medical Uses, 123153 [Feeney, RE and Whitaker, JR, editors]. New York: Marcel Dekker.Google Scholar
Daniel, H, Vohwinkel, M & Rehner, G (1990) Effect of casein and β-casomorphins on gastrointestinal motility in rats. Journal of Nutrition 120, 252257.CrossRefGoogle ScholarPubMed
Daniel, H, Wessendorf, A, Vohwinkel, M & Brantl, V (1990) Effect of D-Ala,Tyr5-β-casomorphin-5-amide on gastrointestinal functions.In β-Casomorphins and Related Peptides, 95104 [Nyberg, F and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Elitsur, Y & Luk, GD (1991) Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clinical and Experimental Immunology 85, 493497.CrossRefGoogle ScholarPubMed
Erll, G, Hahn, A, Brantl, V & Daniel, H (1994) β-Casomorphins and intestinal net fluid transport in vivo.In β-Casomorphins and Related Peptides: Recent Developments 143149 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Fiat, AM, Jollès, P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Molecular and Cellular Biochemistry 87, 530.CrossRefGoogle ScholarPubMed
Hamel, H, Kielwein, G & Teschemacher, H (1985) β-casomorphin immunoreactive materials in cow's milk incubated with various bacterial species. Journal of Dairy Research 52, 139148.CrossRefGoogle ScholarPubMed
Höllt, V (1983) Multiple endogenous opioid peptides. Trends in Neuroscience 6, 2426.Google Scholar
Juillard, V, Laan, H, Kunji, ERS, Jeronimus-Stratingh, CM, Bruins, AP & Konings, WN (1995) The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes β-casein into more than one hundred different oligopeptides. Journal of Bacteriology 177, 34723478.Google Scholar
Loukas, S, Panetsos, F, Donga, E & Zioudrou, C (1990) Selective δ-antagonist peptides, analogs of a-casein exorphin, as probes for the opioid receptor.In β-Casomorphins and Related Peptides, 6575 [Nyberg, F and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Loukas, S, Varoucha, D, Zioudrou, C, Streaty, RA & Klee, WA (1983) Opioid activities and structures of a-casein-dervied exorphins. Biochemistry 22, 45674573.Google Scholar
Mansfeld, R, Kautni, J, Grunert, E, Brantl, V, Jöchle, W (1990) Clinical application of bovine β-casomorphins for treatment of calf diarrhea.In β-Casomorphins and Related Peptides, 105108 [Nyberg, N and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Matthies, H, Stark, H & Hartrodt, B (1984) Derivatives of β-casomorphins with high analgesic potency. Peptides 5, 463470.CrossRefGoogle ScholarPubMed
Meisel, H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Letters 196, 223227.CrossRefGoogle ScholarPubMed
Meisel, H (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopolymers (Peptide Science) 43, 119128.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Meisel, H (1997) Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmacological applications. Lifestock and Production Science 50, 125138.CrossRefGoogle Scholar
Meisel, H & Bockelmann, W (1999) Bioactive peptides encrypted in milk proteins: proteolytic activation and trophofunctional properties. Antonie van Leeuwenhoek 76, 207215.Google Scholar
Meisel, H & Schlimme, E (1996) Bioactive peptides derived from milk proteins: ingredients for functional foods?. Kieler Milchwirtschaftliche Forschungsberichte 48, 343357.Google Scholar
Mentz, P, Neubert, K, Liebmann, C, Hoffmann, S, Schrader, U & Barth, A (1990) Pharmacological effects of β-casomorphins on the cardiadic function.In β-Casomorphins and Related Peptides, 133139 [Nyberg, N and Brantl, V, editors]. Uppsala: Fyris-Tryck AB.Google Scholar
Mierke, DF, Nößner, G, Schiller, PW & Goodman, M (1990) Morphiceptin analogs containing 2-aminocyclopentane carboxylic acid as a peptidomimetic for proline. International Journal of Peptide Research 35, 3445.CrossRefGoogle ScholarPubMed
Panksepp, J, Normansell, L, Siviy, S, Rossi, J & Zolovick, AJ (1984) Casomorphins reduce separation distress in chicks. Peptides 5, 829831.CrossRefGoogle ScholarPubMed
Paroli, E (1988) Opioid peptides from food (the exorphins). World Reviews of Nutrition and Dietetics 55, 5897.Google Scholar
Pihlanto-Leppälä, A, Antila, P, Mäntsälä, P & Hellman, J (1994) Opioid peptides produced by in-vitro proteolysis of bovine caseins. International Dairy Journal 4, 291301.CrossRefGoogle Scholar
Rokka, T, Syväoja, E-L, Tuominen, J & Korhonen, H (1997) Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft 52, 675678.Google Scholar
Schusdziarra, V, Schick, R, de la Fuente, A, Holland, A, Brantl, V & Pfeiffer, EF (1983) Effect of β-casomorphins on somatostatin release in dogs. Endocrinology 112, 19481951.Google Scholar
Schusdziarra, V, Schick, R, de la Fuente, A, Specht, J, Klier, M, Brantl, V & Pfeiffer, EF (1983) Effect of β-casomorphins and analogs on insulin release in dogs. Endocrinology 112, 885889.Google Scholar
Svedberg, J, de Haas, J, Leimenstoll, G, Paul, F & Teschemacher, H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6, 825830.Google Scholar
Tani, F, Shiota, A, Chiba, H & Yoshikawa, M (1994) Serorphin, an opioid peptide derived from bovine serum albumin.In β-Casomorphins and Related Peptides: Recent Developments, 4953 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H & Koch, G (1990) β-Casomorphins: possible physiological significance β-Casomorphins and Related Peptides 143149 [Nyberg, N and Brantl, V, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H, Koch, G & Brantl, V (1994) Milk protein derived atypical opioid peptides and related compounds with opioid antagonist activity.In β-Casomorphins and Related Peptides: Recent Developments, 317 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH.Google Scholar
Teschemacher, H, Koch, G & Brantl, V (1997) Milk protein-derived opioid receptor ligands. Biopolymers (Peptide Science) 43, 99117.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Teschemacher, H, Brantl, V, Henschen, A, Lottspeich, F (1990) β-Casomorphins – β-casein fragments with opioid activity: detection and structure.In β-Casomorphins and Related Peptides: Recent Developments, 914 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH..Google Scholar
Teschemacher, H, Umbach, M, Hamel, U, Praetorius, K, Ahnert-Hilger, G, Brantl, V, Lottspeich, F & Henschen, A (1986) No evidence for the presence of β-casomorphins in human plasma after ingestion of cows' milk or milk products. Journal of Dairy Research 53, 135138.Google Scholar
Tomé, D, Dumontier, AM, Hautefeuille, M & Desjeux, JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. American Journal of Physiology 253, G737-G744.Google ScholarPubMed
Umbach, M, Teschemacher, H, Praetorius, K, Hirschhäuser, R & Bostedt, H (1985) Demonstration of a β-casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12, 223230.CrossRefGoogle ScholarPubMed
Yen, SSC, Quigley, ME, Reid, RL, Ropert, JF & Cetel, NS (1985) Neuroendocrinology of opioid peptides and their role in the control of gonadotropin and prolactin secretion. American Journal of Obsterics and Gynecology 152, 485493.Google Scholar
Yoshikawa, M, Tani, F & Chiba, H (1988) Structure–activity relationship of opioid antagonist peptides derived from milk proteins Peptide Chemistry 473476 [Shiba, T, editors]. Osaka: Protein Research Foundation.Google Scholar
Yoshikawa, M, Tani, F, Shiota, H, Usui, H, Kurahashi, K & Chiba, H (1994) Casoxin D, an opioid antagonist/ileum-contracting/vasorelaxing peptide derived from human αS1-casein β-Casomorphins and Related Peptides: Recent Developments 4348 [Brantl, V and Teschemacher, H, editors]. Weinheim: VCH..Google Scholar