Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T09:58:37.975Z Has data issue: false hasContentIssue false

The nutritional value of poor proteins fed at high levels

1. The growth of rats*

Published online by Cambridge University Press:  09 March 2007

K. J. Carpenter
Affiliation:
School of Agriculture, University of Cambridge
K. Anantharaman
Affiliation:
School of Agriculture, University of Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Groundnut flour plus lysine, fed to young rats at a high level as their sole source of protein supported weight gain and nitrogen retention equal to that on what has been considered the ‘ideal’ egg protein diet. For every 100 metabolizable kcal of the groundnut diet that were consumed, 41 came from the dietary protein and there was a net retention of protein equivalent to 14·5 kcal.

2. The predicted retention of protein according to the equations of Miller & Payne (1961) for this methionine-deficient protein source, given a score of 56 by FAO (1957), would have been equivalent to only 6·1 kcal and, whatever the level of such a protein in a diet, the maximum predicted retention would be equivalent to no more than 8·5 kcal, or 60% of the best expected with egg as the protein source.

3. Feeding a lysine-deficient protein source, wheat gluten, at high levels also gave a greater N retention than had previously been predicted.

4. It is concluded that the Miller & Payne (1961, 1963) equations can greatly under-estimate the performance to be obtained from feeding poor proteins at high levels. A revised equation (P. R. Pane, Private communication) predicts much higher results under these conditions.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1968

References

Anantharaman, K. & Carpenter, K. J. (1967). Proc. Nutr. Soc. 26, xi.Google Scholar
Anantharaman, K., Carpenter, K. J. & Nesheim, M. C. (1968). Br. J. Nutr. 22, 199.CrossRefGoogle Scholar
Association of Official Agricultural Chemists (1965). Official Methods of Analysis, 10th ed. Washington, D.C.: Association of Official Agricultural Chemists.Google Scholar
Barnes, R. H., Bates, M. J. & Maack, J. E. (1946). J. Nutr. 32, 535.CrossRefGoogle Scholar
Bender, A. E. (1954). J. Sci. Fd Agric. 5, 305.CrossRefGoogle Scholar
Bender, A. E. (1961). Publs natn. Res. Coun. Wash. no. 843, p. 407.Google Scholar
Black, A. E. & Cuthbertson, W. F. J. (1963). Proc. Nutr. Soc. 22, xxi.Google Scholar
Block, R. J. & Mitchell, H. H. (19461947). Nutr. Abstr. Rev. 16, 249.Google Scholar
Carew, L. B., Hopkins, D. T. & Nesheim, M. C. (1964). J. Nutr. 83, 300.CrossRefGoogle Scholar
Carpenter, K. J. (1960). Biochem. J. 77, 604.CrossRefGoogle Scholar
Carpenter, K. J. & Anantharaman, K. (1967). Proc. Nutr. Soc. 26, xi.Google Scholar
Carpenter, K. J., March, B. E., Milner, C. K. & Campbell, R. C. (1963). Br. J. Nutr. 17, 309.CrossRefGoogle Scholar
Carpenter, K. J. & De Muelenaere, H. J. H. (1965), Proc. Nutr. Soc. 24, 202.CrossRefGoogle Scholar
Chapman, D. G., Castillo, R. & Campbell, J. A. (1959). Can. J. Biochem. Physiol. 37, 678.CrossRefGoogle Scholar
Coomes, T. J., Crowther, P. C., Francis, B. J. & Stevens, L. (1965). Analyst, Lond. 90, 492.CrossRefGoogle Scholar
Czarnocki, J., Sibbald, I. R. & Evans, E. V. (1960). Can. J. Anim. Sci. 41, 167.CrossRefGoogle Scholar
De Man, T. J. & Zwiep, N. (1955). Voeding 16, 147.Google Scholar
Dreyer, J. J. (1964). Proc. Soc. Adv. Anim. Nutr. S. Africa 1, 19.Google Scholar
FAO (1957). F.A.O. nutr. Stud. no. 16.Google Scholar
FAO (1965). F.A.O. Nutr. Mtg Rep. Ser. no. 37.Google Scholar
Forbes, E. B., Black, A., Thacker, E. J. & Swift, R. W. (1940). J. Nutr. 20, 47.CrossRefGoogle Scholar
Forbes, R. M., Vaughan, L. & Yohe, M. (1958). J. Nutr. 64, 291.CrossRefGoogle Scholar
Ford, J. E. (1962). Br. J. Nutr. 16, 409.CrossRefGoogle Scholar
Fox, M. R. S. & Briggs, G. M. (1960). J. Nutr. 72, 243.CrossRefGoogle Scholar
Hegsted, D. M. (1964). In Mammalian Protein Metabolism. Vol. 2, chap. 14. [Munro, H. N. & Allison, J. B. editors]. New York and London: Academic Press Inc.Google Scholar
Hegsted, D. M. & Chang, Y-O. (1965). J. Nutr. 87, 19.CrossRefGoogle Scholar
Lee, W. V. (1965). Analyst, Lond. 90, 305.CrossRefGoogle Scholar
Ma, T. S. & Zuazaga, G. (1942). Ind. Engng Chem. analyt Edn 14, 280.CrossRefGoogle Scholar
McOsker, D. E. (1962). J. Nutr. 76, 453.CrossRefGoogle Scholar
Miller, D. S. (1963). In Publs natn. Res. Coun., Wash. no. 1100, appendix C, p. 34.Google Scholar
Miller, D. S. & Bender, A. E. (1955). Br. J. Nutr. 9, 382.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1959). Br. J. Nutr. 13, 501.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1961). Br. J. Nutr. 15, 11.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1963). J. theor. Biol. 5, 1398.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1964 a). Nature, Lond. 204, 480.CrossRefGoogle Scholar
Miller, D. S. & Payne, P. R. (1964 b). Proc. Nutr. Soc. 23, 11.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J., Morgan, C. B. & Boyne, A. W. (1965). Br. J. Nutr. 19, 249.CrossRefGoogle Scholar
Morrison, A. B., Sabry, Z. I., Gridgeman, N. T. & Campbell, J. A. (1963). Can. J. Biochem. Physiol. 41, 275.CrossRefGoogle Scholar
Payne, P. R. (1966). Proc. int. Congr. Nutr. VII. Hamburg. Vol. 4, p. 357.Google Scholar
Rutgers University: Bureau of Biological Research (1950). Cooperative Determinations of the Amino Acid Content, and of the Nutritive Value of Six Selected Protein Food Sources. New Brunswick, N.J.; Rutgers University Press.Google Scholar