Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T22:23:09.983Z Has data issue: false hasContentIssue false

Nutritional aspects of amino acid metabolism

2.* The effects of starvation on hepatic portal-venous differences in plasma amino acid concentration and on liver amino acid concentrations in the rat

Published online by Cambridge University Press:  09 February 2010

D. L. Bloxam
Affiliation:
Department of Biochemistry, University College, London
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Concentrations of the amino acids in the plasma of blood from the portal vein and hepatic vein and in the liver of fed rats and rats starved for 1 d or 3 d were measured. The 1 d values were compared with the equilibrium concentrations of the amino acids found in the perfusion medium during perfusion of livers from rats starved for 1 d.

2. The measurements of portal–venous differences in amino acid concentrations confirmed the idea that postprandially and during starvation most of the amino acids flow from extrahepatic tissues to the liver but also showed that during starvation tryptophan, cystine, ornithine, valine, leucinc and isoleucine flow in the opposite direction, from liver to extrahepatic tissues.

3. The blood levels of the non-essential amino acids fell markedly during starvation while those of the essential ones tended to be maintained. This contrasts with the pattern of changes known to take place in rats and man given low-protein diets. In the liver, changes in amino acid concentrations were generally related to those in the blood but not strictly parallel. The relative changes in amino acid concentrations in blood and liver indicate that as starvation progresses the concentrative ability of the liver is enhanced for most of the amino acids which are taken up and that the increased output of those which are released is also due to changed membrane transport.

4. The changes in plasma amino acid concentrations in the blood passing through livers of rats starved for 1 d were, except for tryptophan and perhaps cystine, consistent with the extracellular changes found during perfusion of livers form rats straved for 1 d, indicating that the perfused liver influences concentrations of extracellular amino acids substantially as it does in vivo.

5. The results suggest of mechanism wherby the liver may control the maintenance of the essential amino acids during starvation.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Addis, T., Poo, L. J. & Lew, W. (1936). J. biol. Chem. 116, 343.CrossRefGoogle Scholar
Barcroft, J. & Shore, L. E. (1913). J. Physiol., Lond. 45, 296.CrossRefGoogle Scholar
Beck, F. & Baxter, J. S. (1960). J. Anat. 94, 224.Google Scholar
Bloxam, D. L. (1967 a). Biochem. Pharmac. 16, 283.CrossRefGoogle Scholar
Bloxam, D. L. (1967 b). Biochem. Pharmac. 16, 1848.Google Scholar
Bloxam, D. L. (1971 a). Br. J. Nutr. 26, 393.Google Scholar
Bloxam, D. L. (1971 b). Proc. Can. Fedn biol. Sacs 14, 14.Google Scholar
Bloxam, D. L. (1972 a). Br. J. Nutr. 27, 249Google Scholar
Bloxam, D. L. (1972 b). In Proceedings of the 1st European Meeting on Liver Perfusion. New York: Raven Press. (In the Press.)Google Scholar
Boulouard, R. (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 750.Google Scholar
Brandt, J. C., Castleman, L., Ruskin, H., Greenwald, J. & Kelly, J. (1955). J. clin. Invest. 34, 1017.Google Scholar
Burton, K. (1956). Biochem. J. 62, 315.Google Scholar
Christensen, H. N. (1964). In MammuZian Protein Metabolism Vol. I, p. 105 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.CrossRefGoogle Scholar
Costa, E. (1960). Int. Rev. Neurobiol. 2, 175.Google Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). Am. J. Physiol. 215, 1260.Google Scholar
Exton, J. H., Jefferson, L. S., Butcher, R. W. & Park, C. R. (1966). Am. J. Med. 40, 709.Google Scholar
Felig, P., Marliss, E., Pozefsky, T. & Cahill, G. F. (1970). Am. J. clin. Nutr. 23, 986.CrossRefGoogle Scholar
Felig, P., Pozefsky, T., Marliss, E. & Cahill, G. F. (1970). Science, N. Y. 167, 1003.CrossRefGoogle Scholar
Fisher, M. M. & Kerly, M. (1964). J. Physiol., Lond. 174, 273.Google Scholar
Hems, R., Stubbs, M. & Krebs, H. A. (1968). Biochem. J. 107, 807.CrossRefGoogle Scholar
Henderson, L. M., Schurr, P. E. & Elvehjem, C. A. (1949). J. bid. Chem. 177, 815.Google Scholar
Holt, L. E., Snyderman, S. E., Norton, P. M., Roitman, E. & Finch, J. (1963). Lancet ii, 1343.CrossRefGoogle Scholar
Jefferson, L. S., Exton, J. H., Butcher, R. W., Sutherland, E. W. & Park, C. R. (1968). J. biol. Chem. 243, 1031.Google Scholar
Jefferson, L. S. & Korner, A. (1969). Biochem. J. 111, 703.Google Scholar
Kirsch, R., Saunders, S. J., Frith, L., Wicht, S. & Brock, F. J. (1969). S. Afr. med. J. 43, 125.Google Scholar
Mallette, L. E., Exton, J. H. & Park, C. K. (1969). J. biol. Chem. 244, 5724.CrossRefGoogle Scholar
McMenamy, R. H., Shoemaker, W. C., Richmond, J. E. & Elwyn, D. (1962). Am. J. Physiol. 202, 407.Google Scholar
Meister, A. (1965). Biochemistry of the Amino Acids Vol. I, p. 201New York and London: Academic Press.Google Scholar
Miller, L. L. (1962). In Amino Acid Pools p. 708 [Holden, J. T., editor]. Amsterdam, London and New York: Elsevier.Google Scholar
Mondon, C. E. & Mortimore, G. E. (1967). Am. J. Physiol. 212, 173.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism Vol. I, p. 382 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.Google Scholar
Munro, H. N. (1968). Fedn Proc. Fedn Am. Socs exp. Biol. 27, 1231.Google Scholar
Munro, H. N. (1969). Proc. Nutr. Soc. 28, 214.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1966). Meth. biochem. Analysis 14, 113.Google Scholar
Noall, M. W., Riggs, T. R., Walker, L. M. & Christensen, H. N. (1957). Science N. Y. 126, 1002.CrossRefGoogle Scholar
Page, I. H. (1958). Physiol. Rev. 38, 277.CrossRefGoogle Scholar
Potter, V. R., Baril, E. F., Watanabe, M. & Whittle, E. D. (1968). Fedn Proc. Fedn Am. Socs exp. Bid. 27, 1238.Google Scholar
Reininger, E. J. & Sapirstein, L. A. (1957). Science, N. Y. 126, 1176.CrossRefGoogle Scholar
Rodnight, R. (1961). Int. Rev. Neurobiol. 3, 251.CrossRefGoogle Scholar
Schimassek, H. & Gerok, W. (1965). Biochem. Z. 343, 407.Google Scholar
Shoemaker, W. C., Yanof, H. M., Turk, L. N. & Wilson, T. H. (1963). Gastroenterology 44, 654.Google Scholar
Slater, G. G. (1962). Endocrinology 70, 18.Google Scholar
Spruyt, J. E. L. (1962). A study of amino acid metabolism in the isolated perfused rat liver, with particular reference to transamination reactions. PhD Thesis, University of London.Google Scholar
Swendseid, M. E., Griffith, W. H. & Tuttle, S. G. (1963). Metubolism 12, 96.Google Scholar
Swendseid, M. E., Villalobos, J. & Friedrich, B. (1963). J. Nutr. 80, 99.Google Scholar
Williamson, D. H., Lopes-Vieira, O. & Walker, B. (1967). Biochem. J. 104, 497.CrossRefGoogle Scholar
Wimhurst, J. M. & Manchester, K. L. (1970). Biochem. J. 120, 9..Google Scholar
Wollenberger, A., Ristau, O. & Schoffa, G. (1960). Arch. Ges. Physiol. 270, 399.Google Scholar
Wu, C. (1954). J. biol. Chem. 207, 775.Google Scholar
Wurtman, R. J., Shoemaker, W. J. & Lark, F. (1968). Proc. natn. Acad. Sci. U.S.A. 59, 800.Google Scholar