Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:59:57.743Z Has data issue: false hasContentIssue false

Nucleic acid metabolism in the ruminant

2.* Formation of microbial nucleic acids in the rumen in relation to the digestion of food nitrogen, and the fate of dietary nucleic acids

Published online by Cambridge University Press:  09 March 2007

R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading RG 2 9AT
A. B. Mcallan
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading RG 2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Concentrations of nucleic acid nitrogen (NA-N) and other nitrogenous constituents were estimated in samples of rumen fluid taken from calves and cows which were either given stall diets of varying nitrogen content or were allowed to graze pasture. Concentrations of NA-N ranged from 1.5 to 27.5 mg/100 g water.

2. Ratios of RNA: DNA in rumen fluid were similar to those in rumen bacteria and were not related to those in the diets. Pure nucleic acids added to the rumen were rapidly degraded. It was therefore concluded that NA-N in rumen fluid was largely of microbial origin and provided an index of total microbial nitrogen.

3. In most experiments, with an individual animal consuming diets of various nitrogen contents, NA-N formed a fairly constant percentage (8-15 for different animals) of the total non-ammonia nitrogen in rumen fluid. This suggested that nitrogen entering the rumen fluid limited microbial growth. Consumption of a diet containing extracted decorticated groundnut meal (diet B), however, led to lower values for this percentage than did the other diets. Diet B was also exceptional in leading to marked diurnal variations in NA-N concentrations in rumen fluid, suggesting a cyclic fluctuation in the size of the microbial population.

4. Comparison of NA-N:total nitrogen ratios in rumen fluid and bacteria suggested that, for all the diets except diet B, 55–80 and 40–50% of the non-ammonia nitrogen in rumen fluid was of microbial origin for the calves and cows respectively.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Balch, C. C. & Cowie, A. T. (1962). Cornell Vet. 52, 206.Google Scholar
Blaxter, K. L. (1961). In Digestive Physiology and Nutrition of the Ruminant p. 183. [D., Lewis, editor.] London: Butterworths.Google Scholar
Chalmers, M. I., Jayasinghe, J. B. & Marshall, S. B. M. (1964). J. agric. Sci., Camb. 63, 283.CrossRefGoogle Scholar
Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error 4th ed., p. 98. London: Crosby, Lockwood & Son Ltd.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1969). Br. J. Nutr. 23, 559.CrossRefGoogle Scholar
Ellis, W. C. & Pfander, W. H. (1965). Nature, Lond. 205, 974.CrossRefGoogle Scholar
Ely, D. G., Little, C. O., Woolfolk, P. G. & Mitchell, G. E. Jr (1967). J. Nutr. 91, 314.CrossRefGoogle Scholar
Fauconneau, G. & Gausssères, B. (1966). Proc. int. Grassld Congr. IX. São Paula, 1965. Vol. 7, p. 859.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Aust. J. Sci. 30, 215.Google Scholar
Fleck, A. & Munro, H. N. (1965). Clinica chim. Acta 11, 2.CrossRefGoogle Scholar
Gaussères, B. & Fauconneau, G. (1965). Annls Biol. anim. Biochim. Biophys. 5, 5.CrossRefGoogle Scholar
Leroy, F., Zelter, S. Z. & Francois, A. C. (1964). C. r. hebd. Séanc. Acad. Sci., Paris 259, 1592.Google Scholar
McAllan, A. B. & Smith, R. H. (1969). Br. J. Nutr. 23, 671.CrossRefGoogle Scholar
McDonald, I. W. (1954 a). Biochem. J. 56, 120.CrossRefGoogle Scholar
McDonald, I. W. (1954 b). Biochem. J. 57, 566.CrossRefGoogle Scholar
Purser, D. B. & Buechler, S. M. (1966). J. Dairy Sci. 49, 81.CrossRefGoogle Scholar
Radin, I. D. K. (1965). Trudy vses. Inst. Fiziol. Biokhim. sel'.-khoz. Zhivotn. 2, 105.Google Scholar
Smith, R. H. (1959). J. agric. Sci., Camb. 52, 72.CrossRefGoogle Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1966). Br. J. Nutr. 20, 703.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Proc. Nutr. Soc. 29, 50A.Google Scholar
Smith, R. H., McAllan, A. B. & Hill, W. B. (1968). Proc. Nutr. Soc. 27, 48A.CrossRefGoogle Scholar
Smith, R. H., McAllan, A. B. & Hill, W. B. (1969). Proc. Nutr. Soc. 28, 28A.CrossRefGoogle Scholar
Temler-Kucharski, A. & Gaussères, B. (1965). Annls Biol. anim. Biochim. Biophys. 5, 207.CrossRefGoogle Scholar
Topps, J. H. & Elliott, R. C. (1965). Nature, Lond. 205, 498.CrossRefGoogle Scholar
Warner, A. C. I. & Stacy, B. D. (1968). Br. J. Nutr. 22, 369.CrossRefGoogle Scholar
Weller, R. A. (1957). Aust. J. biol. Sci. 10, 384.CrossRefGoogle Scholar