Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T17:19:57.840Z Has data issue: false hasContentIssue false

Nitrogen metabolism in sheep

Published online by Cambridge University Press:  06 August 2007

G. W. Mathison
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. 15NH4Cl was continuously infused for periods of 120–216 h into the rumens of sheep which were allowed to feed 2 out of every 10min. These treatments achieved steady metabolic states and allowed the assessment of nitrogen conversions by means of tracer methodology. The sheep were given either a barley diet or one of three hay diets. In two trials, the flow of abomasal material was determined using lignin and polyethylene glycol as markers. The amounts of dry matter (DM), gross energy, total N, soluble N, microbial N and microbial DM in abomasal digesta, and the concentration of ammonia in the rumen liquor were measured. The concentrations of 15N in the N of urine, faeces, rumen and abomasal bacteria and protozoa, rumen and abomasal bacterial and protozoal protein, abomasal particulate matter and in rumen ammonia were determined.

2. Comparisons of the steady-state concentrations of 15Nin the microbes with that in rumen ammonia indicated that from 50 to 65% of the bacterial N and from 31 to 55% of the protozoal N were derived from rumen ammonia in vivo.

3. An amount of N equivalent to 60–92% of the daily intake was transformed into ammonia N in the runen.

4. Some 17–54% of the ammonia was absorbed from the rumen, but this was not readily converted into urea.

5. Microbial growth in the rumen resulted in the assimilation of 1.7–2.6 g N/100 g DM fermented.

6. The generation-time of bacterial protein in the rumen was calculated from the rate of in- crease of 15N concentration in this fraction, and values of 38 and 42 h were obtained for sheep given barley and hay diets respectively.

7. The combined results allowed quantitative estimates to be made of the complete metabolism of rumen N, and from these the possibility of fixation of N gas in the rumen was suggested.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1971

References

Annison, E. F. & Lewis, D. (1959). Metabolism in the rumen p. 18. New york: John Wiley and Sons Inc.Google Scholar
Badawy, A. M., Campbell, R. M., Cuthbertson, D. P., Fell, B. F. & Mackie, W. S. (1958). Br. J. Nutr. 12, 367.CrossRefGoogle Scholar
Blackburn, T. H. (1965). In Physiology of Digestion in the Ruminant p. 322 [Dougherty, R. W., editor]. Washington: Butterworth Inc.Google Scholar
Blackburn, T. H. & Hobson, P. N. (1960). Br. J. Nutr. 14, 445.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1962). J. Bact. 84, 605.CrossRefGoogle Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
Conrad, H. R. & Hibbs, J. W. (1968). J. dairy Sci. 51, 276.CrossRefGoogle Scholar
Cook, R. M., Brown, R. E. & Davis, C. L. (1965). J. dairy Sci. 48, 475.CrossRefGoogle Scholar
Faust, H., Gürtler, H., Hübner, G., Hübner, H., Mielke, H., Rommel, W., Ulbrich, M. & Wetzel, K. (1963).Arch. Tierernähr. 13, 475.CrossRefGoogle Scholar
Faust, H., Mielke, H., Richter, H. & Gürtler, H. (1966). Arch. Tierernähr. 16, 375.Google Scholar
Fawcett, J. K. & Scott, J. D. (1960). J. clin. Path. 13, 156.CrossRefGoogle Scholar
Ford, A. L. (1969). Tracer studies of urea recycling and metabolism in the sheep. MSc Thesis, University of alberta, Canada.Google Scholar
Gray, F. V., Pilgrim, A. F. & Weller, R. A. (1958). Br. J. Nutr. 12, 413.CrossRefGoogle Scholar
Harris, L. E. & Phillipson, A. T. (1962). Anim. Prod. 4, 97.Google Scholar
Hobson, P. N. (1965). J. gen. Microbiol. 38, 167.CrossRefGoogle Scholar
Hobson, P. N., Mcdougall, E. I. & Summers, R. (1968).J. gen. Microbiol. 50, i.Google Scholar
Hobson, P. N. & Summers, R. (1967). J. gen. Microbiol. 47, 53.Google Scholar
Hogan, J. P. & Phillipson, A. T. (1960). Br. J. Nutr. 14, 147.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1967 a). Aust. J. agric. Res. 18, 803.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1967 b). Aust. J. agric. Res. 18, 973.Google Scholar
Hogan, J. P. & Weston, R. H. (1969). Aust. J. agric. Res. 20, 339.CrossRefGoogle Scholar
Hoshino, S., Sarumaru, K. & Morimoto, K. (1966).J. dairy Sci. 49, 1523.CrossRefGoogle Scholar
Houpt, T. R. (1959). Am. J. Physiol. 197, 115.CrossRefGoogle Scholar
Huhtanen, C. N. & Gall, L. S. (1955). J. Bact. 69, 102.CrossRefGoogle Scholar
Hungate, R. E. (1963). J. Bact. 86, 848.CrossRefGoogle Scholar
Hungate, R. E. (1966). The rumen and its microbes. New york: Academic press Inc.Google Scholar
Kleiber, M. (1956). Publs natn. Res. Coun., wash. no. 338, p.10.Google Scholar
Land, H. & Virtanen, A. I. (1959). Acta chem. scand. 13, 489.Google Scholar
Lewis, D., Hill, K. J. & Annison, E. F. (1957). Biochem. J. 66, 587.CrossRefGoogle Scholar
Meyer, J. H., Gaskill, R. L., Stoewsand, G. S. & Weir, W. C. (1959). J. Anim. Sci. 18, 336.CrossRefGoogle Scholar
Mulligan, F. & Workmall, A. (1959). Isotopic tracers p. 402. London: The athlone press.Google Scholar
Norman, A. G. & Jenkins, S. H. (1934). Biochem. J. 28, 2160.CrossRefGoogle Scholar
Pilgrim, A. F., Gray, F. V. & Belling, G. B. (1969). Br. J. Nutr. 23, 647.CrossRefGoogle Scholar
Roberts, R. B., Abelson, P. H., Cowie, D. B., Bolton, E. T. & Britten, R. J. (1955). Publs Carnegie Instn no. 607, p.13.Google Scholar
Schoenheimer, R., Ratner, S. & Rittenberg, D. (1939). J. biol. Chem. 130, 703.CrossRefGoogle Scholar
Sheppard, C. W. (1962). Basic principles of the tracer method. London: John Wiley and Sons Inc.Google Scholar
Smith, R. H. (1959). J. agric. Sci., Camb. 52, 72.CrossRefGoogle Scholar
Smith, R. H., Mcallan, A. B. & Hill, W. B. (1968). Proc. Nutr. Sol. 27, 48A.Google Scholar
Somers, M. (1961). Aust. J. exp. Biol. med. Sci. 39, 145.CrossRefGoogle Scholar
Steele, R., Wall, J. S., De bodo, R. C. & Altzuler, N. (1956). Am. J. Physiol. 187, 15.CrossRefGoogle Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.CrossRefGoogle Scholar
Ulbrich, M. & Scholz, H. (1963). Arch. Tierernähr. 13, 296.CrossRefGoogle Scholar
Ulbrich, M. & Scholz, H. (1966 a). Arch. Tierernähr. 16, 325.CrossRefGoogle Scholar
Ulbrich, M. & Scholz, H. (1966 b). Arch. Tierernähr. 16, 387.CrossRefGoogle Scholar
Warner, A. C. I. (1956). Biochem. J. 64, I.CrossRefGoogle Scholar
Weller, R. A., Pilgrim, A. F. & Gray, F. V. (1962). Br. J. Nutr. 16, 83.Google Scholar
Weston, R. H. & Hogan, J. P. (1967). Aust. J. biol. Sci. 20, 967.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1968). Aust. J. agric. Res. 19, 567.CrossRefGoogle Scholar