Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T17:38:15.608Z Has data issue: false hasContentIssue false

Nitrogen digestion in sheep given poor-quality indigenous hill herbages

Published online by Cambridge University Press:  09 March 2007

J. C. Macrae
Affiliation:
Hill Farming Research Organisation, Bush Estate, Penicuik, Midlothian, EH26 OPY
J. A. Milne
Affiliation:
Hill Farming Research Organisation, Bush Estate, Penicuik, Midlothian, EH26 OPY
S. Wilson
Affiliation:
Hill Farming Research Organisation, Bush Estate, Penicuik, Midlothian, EH26 OPY
Angela M. Spence
Affiliation:
Hill Farming Research Organisation, Bush Estate, Penicuik, Midlothian, EH26 OPY
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In two experiments, the sites of digestion of non-ammonia nitrogen (NAN) and the amounts of urea N recycled to the rumen were measured in mature wether sheep given diets of indigenous hill herbage (Agrostis–Festuca and heather).

2. Duodenal and ileal flow values were obtained using 103Ru-phenanthroline and 51Cr-EDTA markers in animals prepared with simple (T-shaped) cannuals. Amounts of urea N recycled to the rumen were estimated from measurements of the transfer of plasma urea carbon into rumen bicarbonate and the production rate of rumen bicarbonate using 14C-labelled urea and bicarbonate respectively.

3. The flows of NAN at the duodenum and ileum were linearly related to the intake of herbage (P < 0.001). There was a net gain of non-ammonia N anterior to the duodenum on both diets (at an intake of 460 g organic matter (OM)/d, 3.7 g NAN/d on Agrostis–Festuca and 3.3 g NAN/d on heather).

4. Net digestibility of NAN entering the small intestine was within a normal range on the Agrostis–Festuca (0.58 at 460 g OM intake) diet but low on the heather diet (0.043 at 460 g OM intake).

5. It was calculated that at 460 g OM intake only 0.9 and 1.1 g/d respectively of the duodenal NAN on the Agrostis-Festuca and heather diets could have been derived from urea-N recycled to the rumen. Thus 2.8 g and 2.2 g/d had to be accounted for as non-urea endogenous NAN.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Armstrong, D. G. & Hutton, K. (1975). In Digestion and Metabolism in the Ruminant, p. 432 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Armstrong, R. H. & Eadie, J. (1977). J. agric. Sci. Camb. 88, 683.CrossRefGoogle Scholar
Ash, R. W. & Dobson, A. (1963). J. Physiol. 169, 39.CrossRefGoogle Scholar
Binnerts, W. T., van' Klooster, A. Th. & Frens, A. M. (1968). Vet. Rec. 82, 470.Google Scholar
Clarke, E. M. W., Ellinger, G. M. & Phillipson, A. T. (1966). Proc. R. Soc. Lond. B 166, 63.Google Scholar
Coccirnano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.Google Scholar
Coelho da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972). Br. J. Nutr. 21, 43.CrossRefGoogle Scholar
Conway, E. J. (1957). In Micro-diffusion Analysis and Volumetric Error, 4th ed. London: Lockwood.Google Scholar
Egan, A. R. (1974). Aust. J. agric. Res. 25, 613.CrossRefGoogle Scholar
Egan, A. R. & MacRae, J. C. (1978). Proc. Nutr. Soc. 37, 15A.Google Scholar
Egan, A. R. & Ulyatt, M. J. (1979). J. agric. Sci. Camb. 92, 605.Google Scholar
Harris, L. E. & Phillipson, A. T. (1962). Anim. Prod. 4, 97.Google Scholar
Hecker, J. F. (1974). In Experimental Surgery on Small Ruminants, p. 126. London: Butterworths.Google Scholar
Hogan, J. P. & Weston, R. H. (1967). Aust. J. agric. Res. 18, 803.CrossRefGoogle Scholar
Houpt, T. R. (1959). Am. J. Physiol. 197, 115.CrossRefGoogle Scholar
Kay, R. N. B. & McKenzie, J. D. (1968). J. Sci. Technol. 14, 15.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1977). Proc. Nutr. Soc. 36, 53A.Google Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 40, 149.CrossRefGoogle Scholar
Leng, R. A. & Leonard, G. J. (1965). Br. J. Nutr. 19, 469.CrossRefGoogle Scholar
McDonald, I. W. (1948). Biochem. J. 42, 58A.CrossRefGoogle Scholar
MacRae, J. C. & Reeds, P. J. (1979). Proc. 29 Nottingham Easter School [Buttery, P. J. & Lindsay, D. B. editors]. (In the Press.)Google Scholar
MacRae, J. C., Reid, C. S. W., Dellow, D. W. & Wyburn, R. S. (1973). Res. vet. Sci. 14, 78.CrossRefGoogle Scholar
MacRae, J. C. & Ulyatt, M. J. (1974). J. agric. Sci. Camb. 82, 309.CrossRefGoogle Scholar
MacRae, J. C., Ulyatt, M. J., Pearce, P. D. & Hendtlass, J. (1972). Br. J. Nutr. 27, 39.CrossRefGoogle Scholar
MacRae, J. C. & Wilson, S. (1978). Int. J. appl. Radiat. Isotopes 29, 191.CrossRefGoogle Scholar
MacRae, J. C., Wilson, S. & Milne, J. A. (1978). Proc. Nutr. Soc. 37, 16A.Google Scholar
MacRae, J. C., Wilson, S., Milne, J. A. & Spence, A. M. (1977). Proc. Nutr. Soc. 36, 77A.Google Scholar
Marsh, W. H., Fingerhut, B. & Miller, H. (1965). Clin. Chem. 11, 624.CrossRefGoogle Scholar
Milne, J. A. (1974). J. agric. Sci. Camb. 83, 281.CrossRefGoogle Scholar
Milne, J. A., Christie, A. & Russel, A. J. F. (1979). J. agric. Sci. Camb. 92, 635.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1974). Proc. Nutr. Soc. 33, 1.CrossRefGoogle Scholar
Nolan, J. V. & MacRae, J. C. (1976). Proc. Nutr. Soc. 35, 110A.Google Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.CrossRefGoogle Scholar
Norton, B. W., Murray, R. M., Entwistle, K. W., Nolan, J. V., Ball, F. M. & Leng, R. A. (1978). Aust. J. agric. Res. 29, 595.CrossRefGoogle Scholar
Pearson, R. M. & Smith, J. A. B. (1943). Biochem. J. 37, 153.CrossRefGoogle Scholar
Phillipson, A. T., Dobson, M. J. & Blackburn, T. H. (1959). Nature, Lond. 183, 402.CrossRefGoogle Scholar
Phillipson, A. T., Dobson, M. J., Blackburn, T.H. & Wilson, M. (1962). Br. J. Nutr. 16, 151.CrossRefGoogle Scholar
Russel, A. J. F., Doney, J. M. & Gunn, R. G. (1969). J. agric. Sci. Camb. 72, 451.CrossRefGoogle Scholar
Russel, A. J. F., Gunn, R. G. & Doney, J. M. (1968). Anim. Prod. 10, 43.CrossRefGoogle Scholar
Salter, D. N. & Smith, R. H. (1977). Proc. Nutr. Soc. 36, 54A.Google Scholar
Somers, M. (1961). Aust. J. exp. Biol. med. Sci. 39, 123.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1960). Principles and Procedures of Statisrics. New York: McGraw-Hill.Google Scholar
Tan, N. H., Weston, R. H. & Hogan, J. P. (1971). Int. J. appl. Radiat. Isotopes 22, 301.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1968). Aust. J. agric. Res. 19, 567.CrossRefGoogle Scholar