Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T22:37:35.961Z Has data issue: false hasContentIssue false

A multicompartmental model to describe marker excretion patterns in ruminant faeces

Published online by Cambridge University Press:  24 July 2007

M. S. Dhanoa
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
R. C. Siddons
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
J. France
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
D. L. Gale
Affiliation:
The Grassland Research Institute, Hurley, Maidenhead, Berkshire SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A multicornpartmental model, which assumes first-order kinetics, is proposed to describe digesta flow along the gastrointestinal tract of ruminants.

2. Solution of the model yields a multiplicative equation, containing a single-exponential term and a double-exponential term, for describing faecal outflow rate.

3. The logarithmic transformation of the equation was fitted to eighty-two excretion curves obtained after the administration of marker into the rumen of cattle and sheep, and compared with other published models.

4. It was found to be superior to the other models in that it fitted all the data sets successfully.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Binnerts, W. T., Van't Klooster, A. Th. & Frens, A. M. (1968). Veterinary Record 82, 470.Google Scholar
Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1956). British Journal of Nutrition 10, 6991.CrossRefGoogle Scholar
Christian, K. R. & Coup, M. R. (1954). New Zealand Journal of Science and Technology A 36, 328330.Google Scholar
Defares, A. G. & Sneddon, I. N. (1961). An Introduction to the Mathematics of Medicine and Biology, pp. 582586. Amsterdam: North-Holland Publishing Company.Google Scholar
Ellis, W. C., Matis, J. H. & Lascano, C. (1979). Federation Proceedings 38, 27022706.Google Scholar
Faichney, G. J. & Boston, R. C. (1983). Journal of Agricultural Science, Cambridge 101, 575581.CrossRefGoogle Scholar
France, J., Thornley, J. H. M., Dhanoa, M. S. & Siddons, R. C. (1985). Journal of Theoretical Biology (In the Press.)Google Scholar
Grovum, W. L. & Phillips, G. D. (1973). British Journal of Nutrition 30, 377391.CrossRefGoogle Scholar
Grovum, W. L. & Williams, V. J. (1973). British Journal of Nutrition 30, 313329.CrossRefGoogle Scholar
Jacques, J. A. (1972). Compartmental Analysis in Biology and Medicine. Amsterdam: Elsevier.Google Scholar
Milne, J. A., MacRae, J. C., Spence, A. M. & Wilson, S. (1978). British Journal of Nutrition 40, 347357.CrossRefGoogle Scholar
Ross, G. J. S. (1980). MLP: Maximum Likelihood Program. Harpenden, Herts: Rothamsted Experimental Station.Google Scholar
Ross, G. J. S. (1981). In Mathematics and Plant Physiology, pp. 269282. [Rose, D. A. and Charles-Edwards, D. A., editors]. London: Academic Press.Google Scholar
Udén, P., Colucci, P. E. & Van Soest, P. J. (1980). Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle Scholar
Udén, P., Rounsaville, T. R., Wiggans, G. R. & Van Soest, P. J. (1982). British Journal of Nutrition 48, 329339.CrossRefGoogle Scholar
Waldo, D. R., Smith, L. W., Cox, E. L., Weinland, B. T. & Lucas, H. L. (1971). Journal of Dairy Science 54, 14651469.CrossRefGoogle Scholar