Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T11:37:50.376Z Has data issue: false hasContentIssue false

Morphological changes in hepatocytes of rats deprived of dietary nucleotides

Published online by Cambridge University Press:  09 March 2007

Ana T. Lopez-Navarro
Affiliation:
Department of Biochemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
Juan D. Bueno
Affiliation:
Department of Biochemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
Angel Gil
Affiliation:
Department of Biochemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
Antonio Sánchez-Pozo
Affiliation:
Department of Biochemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the present study was to investigate the influence of dietary nucleotides on liver morphology. Adult rats were fed for 21 d on a nucleotide-containing diet or the same diet free of nucleotides. Liver sections were examined by light and transmission electron microscopy, as well as for nucleic acid and protein contents. Morphometric analysis was performed for different variables. Deprivation of dietary nucleotides resulted in a reduction in hepatocyte nuclear and nucleolar areas as well as in nuclear chromatin condensation. In addition, the rough endoplasmic reticulum was reduced, as were ribosome association and abundance, whereas fat accumulated. These findings portray dietary nucleotides as required nutrients for the liver under normal physiological conditions and suggest that an inadequate supply of nucleotides for a certain period of time has transient negative effects on liver ultrastructure and function.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

American Institute of Nutrition (1977). Report of the AIN ad hoc Committee on Standards for Nutritional Studies. Journal of Nutrition 107, 13401348.CrossRefGoogle Scholar
Berthold, H. K., Crain, P. F., Gouni, I., Reeds, P. J. & Klein, P. D. (1995). Evidence for incorporation of intact dietary pyrimidine (but not purine) nucleosides into hepatic RNA. Proceedings of the National Academy of Sciences, USA 92, 1012310127.CrossRefGoogle ScholarPubMed
Bissonnette, R. (1992). The de novo and salvage pathways for the synthesis of pyrimidine residues of RNA predominate in different locations within the mouse duodenal epithelium. Cell Tissue Research 267, 131137.CrossRefGoogle Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Burridge, P. W., Woods, R. A & Henderson, J. F. (1976). Utilization of dietary nucleic acid purines for nucleotide and nucleic acid synthesis in the mouse. Canadian Journal of Biochemistry 54, 500506.CrossRefGoogle ScholarPubMed
Carver, J. D. (1994). Dietary nucleotides: cellular immune, intestinal and hepatic system effects. Journal of Nutrition 124, 144s148s.CrossRefGoogle ScholarPubMed
Clifford, A. J., Riumallo, J. A., Baliga, B. S., Munro, H. N. & Brown, P. R. (1972). Liver nucleotide metabolism in relation to amino acid supply. Biochimica et Biophysica Acta 271, 443458.CrossRefGoogle Scholar
Dixon, W. J., Brown, M. B., Engelman, L. & Jennrich, R. I. (1990). BMDP Statistical Sqftware Manual. Berkeley CA: University of California Press.Google Scholar
Fleck, A. & Munro, H. N. (1962). The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochimica et Biophysica Acta 177, 175179.Google Scholar
Gross, C. J. & Savaiano, D. A. (1991). Effect of nutritional state and allopurinol on nucleotide formation in enterocytes from the guinea pig small intestine. Biochimica et Biophysica Acta 1073, 260267.CrossRefGoogle ScholarPubMed
Gross, C. J., Stiles, J. E. & Savaiano, D. A. (1988). Effect of nutritional state and allopurinol on purine metabolism in the rat small intestine. Biochimica et Biophysica Acta 966, 168175.CrossRefGoogle ScholarPubMed
Hernández-Muñoz, R., Diaz-Muñoz, M. & Chagoya de Sánchez, V. (1994). Possible role of cell redox state on collagen metabolism in carbon tetrachloride-induced cirrhosis as evidenced by adenosine administration to rats. Biochimica et Biophysica Acta 1200, 9394.CrossRefGoogle ScholarPubMed
Institute of Laboratory Animal Resources (1979). Control diets in laboratory animal experimentation. Nutrition Abstracts and Reviews 49, 413419.Google Scholar
Kim, Y., King, T., Teague, W. E., Rufo, G. A., Veech, R. L. & Passonneau, J. M. (1992). Regulation of the purine salvage pathway in rat liver. American Journal of Physiology 25, E344–E352.Google Scholar
Labarca, C. & Paigen, K. (1980). A simple and sensitive DNA assay procedure. Analytical Biochemistry 102, 344352.CrossRefGoogle ScholarPubMed
López-Navarro, A. T., Gil, A. & Sanchez-Pozo, A. (1995). Deprivation of dietary nucleotides results in a transient decrease in acid-soluble nucleotides and RNA concentration in rat liver. Journal of Nutrition 125, 20902095.CrossRefGoogle Scholar
MacKinnon, A. M. & Deller, D. J. (1973). Purine nucleotide biosynthesis in gastrointestinal mucosa. Biochimica et Biophysica Acta 319, 14.CrossRefGoogle ScholarPubMed
Marimoto, Y., Wettstein, M. & Haussinger, D. (1993). Hepatocyte heterogeneity in response. to extracellular adenosine. Biochemical Journal 293, 573581.CrossRefGoogle Scholar
Matsui, Y., Okuda, Y., Nakagawa, N., Known, A. H., Minoura, T., Hiramatsu, Y., Uetsuji, S. & Kamiyama, Y. (1994). Effect of hepatocyte volume on energy status in the cirrhotic rat liver. Journal of Gastroenterology and Hepatology 9, 613619.CrossRefGoogle ScholarPubMed
Melise, T. & Xue, Z. (1995). The nucleolus: an organelle formed by the act of building a ribosome. Current Opinion in Cell Biology 7, 319324.CrossRefGoogle Scholar
Moyer, J., Malinowski, N. & Ayers, O. (1985). Salvage of circulating pyrimidine nucleosides by tissues of the mouse. Journal of Biological Chemistry 260, 28122817.CrossRefGoogle ScholarPubMed
Oler, R., Farber, E. & Shull, K. H. (1969). Resistance of liver polysomes to ATP deficiency in the male rat. Biochimica et Biophysica Acta 190, 161169.CrossRefGoogle ScholarPubMed
Ogoshi, S., Iwasa, M. & Mizobuchi, S. (1990). Effect of a nucleoside and nucleotide mixture on protein metabolism in rats given total parenteral nutrition after 70% hepatectomy. In Nutrifional Support in Organ Failure, pp. 309317 [Tanaka, T. and Tamiya, O. A., editors]. Amsterdam: Elsevier.Google Scholar
Ogoshi, S., Iwasa, M., Yonezawa, T. & Tamiya, T. (1985). Effect of nucleotide and nucleoside mixture on rats given total parenteral nutrition after 70% hepatectomy. Journal of Parenteral and Enteral Nutrition 9, 339342.CrossRefGoogle ScholarPubMed
Palella, T. D. & Fox, I. H. (1989). Hyperuricemia and gout. In The Metabolic Basis of Inherited Disease, pp. 9651006 [Scriver, C. R., Beaudet, A. L., Sly, W. S. and Valle, D., editors]. New York: McGraw-Hill.Google Scholar
Palombo, J. D., Bowers, J. L., Clouse, M. E., McCullough, A., Forse, R. A. & Bistrian, B. R. (1993). Hepatic utilization of exogenous nucleotide precursors for restoration of ATP after cold ischemia in rats. American Journal of Clinical Nutrition 57, 420427.CrossRefGoogle ScholarPubMed
Rijcken, W. R. Pels, Overdijk, B., Van den Eijnden, D. H. & Ferwerda, W. (1993). Pyrimidine nucleotide metabolism in rat hepatocytes: evidence for compartmentation of nucleotide pools. Biochemical Journal 293, 207213CrossRefGoogle Scholar
Rijcken, W. R. Pels, Overdijk, B., Van den Eijnden, D. H. & Ferwerda, W. (1995). The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochemicul Journal 305, 865870.CrossRefGoogle Scholar
Rasenack, J., Pausch, J. & Gerok, W. (1985). De novo pyrimidine biosynthesis in isolated rat hepatocytes. Journal of Biologiral Chemistry 260, 41454150.CrossRefGoogle ScholarPubMed
Reynolds, E. S. (1963). The use of lead & rate at high pH as a electron-opaque stain in electron microscopy. Journal of Cell Biology 17, 208212.CrossRefGoogle Scholar
Savaiano, D. A. & Clifford, A. J. (1978). Absorption, tissue incorporation and excretion of free purine bases in the rat. Nutrition Reports International 17, 551556.Google Scholar
Sonoda, T. & Tatibana, M. (1978). Metabolic fate of pyrimidines and purines in dietary nucleic acids ingested by mice. Biochimica et Biophysica Acta 521, 5566.CrossRefGoogle ScholarPubMed
Spurr, A. R. (1969). A low viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research 26, 3143.CrossRefGoogle ScholarPubMed
Torres, M. I., Fernandez, M. I., Foutana, L., Gil, A. & Rios, A. (1996). Influence of dietary nucleotides on liver structural recovery and hepatocyte binuclearity in cirrhosis induced by thioacetamide. Gut 38, 260264.CrossRefGoogle Scholar
Uauy, R., Quan, R. & Gil, A. (1994). Role of nucleotides in intestinal development and repair: implications for infant nutrition. Journal of Nutrition 124, 1436s1441s.CrossRefGoogle ScholarPubMed
Warner, J. R. (1990). The nucleolus and ribosome formation. Current Opinion in Cell Biology 2, 521527.CrossRefGoogle ScholarPubMed
Wilson, D. W. & Wilson, H. C. (1962). Studies of in vitro digestion and absorption of purine ribonucleotides by the intestines. Journal of Biological Chemistry 237, 16431647.CrossRefGoogle Scholar
Windmueller, H. G. & Levy, R. I. (1967). Total inhibition of hepatic beta-lipoprotein production in the rat by orotic acid. Journal of Biological Chemistry 242, 22462254.CrossRefGoogle ScholarPubMed
Wynants, J. & Belle, H. V. (1985). Single-run high-performance liquid chromatography of nucleotides, nucleosides and major purine bases and its application to different tissue extracts. Analytical Biochemistry 144, 258266.CrossRefGoogle ScholarPubMed