Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T01:32:09.309Z Has data issue: false hasContentIssue false

Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics

Published online by Cambridge University Press:  09 March 2007

Gerd E. Vegarud*
Affiliation:
Department of Food Science, Agricultural University of Norway, PO Box 5036, N-1432 Aas, Norway
T. Langsrud
Affiliation:
Department of Food Science, Agricultural University of Norway, PO Box 5036, N-1432 Aas, Norway
C. Svenning
Affiliation:
Department of Food Science, Agricultural University of Norway, PO Box 5036, N-1432 Aas, Norway
*
*Corresponding author: Gerd Elisabeth Vegarud, fax +47 64 943789, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Minerals and trace elements in cow's milk occur as inorganic ions and salts or form complexes with proteins and peptides, carbohydrates, fats and small molecules. The main mineral binder or chelators of calcium are the caseins, αs1-casein, αs2-casein, β-casein and κ-casein, but also whey proteins and lactoferrin bind specific minerals like calcium, magnesium, zinc, iron, sodium and potassium. Less documented is the binding of trace elements. Peptides obtained by in vitro or in vivo hydrolysis act as mineral trappers through specific and non-specific binding sites. They may then function as carriers, chelators, of various minerals and thus enhance or inhibit bioavailability. Peptides from milk proteins have found interesting new applications in the food industry as products with improved functionality or as ingredients of dietary products, or used in pharmaceutical industry. Fortification of foods with minerals in a low concentration has for a long time been used in some countries to overcome mineral deficiency, which is an increasing problem in humans. These types of foods are being used to create a new generation of super foods in the industry today.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Adler-Nissen, J; 1986Enzymic Hydrolysis of Food ProteinsElsevier Applied Science Publishers.Google Scholar
Amine, EK and, Hegsted, DM (1975) Effect of dietary carbohydrates and fats on inorganic iron absorption Journal of Agricultural and Food Chemistry 23, 204208.CrossRefGoogle ScholarPubMed
Antila, P, Paakkari, I, Järvinen, A, Mattila, MJ, Laukkanen, M, Pilhlanto-Leppala, A, Mäntsälä, P and, Hellman, J (1991) Opioid peptides produced by in-vitro proteolysis of bovine whey proteins International Dairy Journal 1, 215229.CrossRefGoogle Scholar
Arizono, K, Takiguchi, M, Ueda, T, Ariyoshi, T and, Horie, T (1996) Study on the incorporation of 59Fe-sodium ferrous citrate into the blood, milk and each tissue of maternal and neonatal rats after dosing to lactating rats Trace Elements and Electrolytes 13, 167171.Google Scholar
Aziz, Alrahman A (1994) An ion exchange separation–atomic absorption spectrophotometric method for the determination of microgram quantities of copper, iron and zinc in infant milk formula: powder form Analytical Letters 27, 411428.CrossRefGoogle Scholar
Baumy, JJ and, Brulè, G (1988) Effect of pH and ionic strength on the binding of bivalent cations to β-casein Le Lait 68, 409418.CrossRefGoogle Scholar
Boccio, JR, Zubillaga, MB, Caro, RA, Gotelli, CA, Gotelli, MJ and, Weill, R (1996) Bioavailability and stability of microencapsulated ferrous sulfate in fluid milk. Studies in Mice Journal of Nutritional Science and Vitaminology 42, 233239.CrossRefGoogle ScholarPubMed
BorchIohnsen, B, Bakkene, G, Ekman, M and, Reizenskein, P (1994) High bioavailabity to humans of supplemented iron in a whey concentrate product Nutrition Research 14, 16431648.CrossRefGoogle Scholar
Bouhallab, S, Leonil, J and, Maubois, J (1991) Complexation du fer par le phosphopeptide (1–25) de la caséine: action de l'alcalase et de la phosphatase acide Le Lait 71, 435443.CrossRefGoogle Scholar
Brulé, G and, Fauquant, J (1982) Interactions des protéines du lait et des oligoéléments Le Lait 62, 323331.CrossRefGoogle Scholar
Cämmerer, B and, Kroh, LW (1996) Investigation of the contribution of radicals to mechanism of the early stage of the Maillard reaction Food Chemistry 57, 217221.CrossRefGoogle Scholar
Cayot, P, Lorient, D, SDamodaran, and AParaf (1997) Structure–function relationships of whey proteins Food Proteins and Their Applications 225256.CrossRefGoogle Scholar
Chung, TDY and, Raymond, KN (1993) Lactoferrin: the role of conformational changes in its iron binding and release Journal of American Chemical Society 115, 67656768.CrossRefGoogle Scholar
Clydesdale, FM and, Nadeau, DB (1984) Solubilization of iron in cereals by milk and milk fractions Cereal Chemistry 61, 330335.Google Scholar
Damodaran, S, and, ORFennema (1996) Amino acids, peptides, and proteins Food Chemistry 321432.Google Scholar
Dufour, E, Dalgarrondo, M and, Haertlé, T (1994) Limited proteolysis of β-lactoglobulin using thermolysin. Effects of calcium on the outcome of proteolysis International Journal of Biological Macromolecules 16, 3741.CrossRefGoogle ScholarPubMed
Fairweather-Tait, SJ, Minihane, A, Eagles, J, Owen, L and, Crews, HM (1997) Rare earth elements as nonabsorbable fecal markers in studies of iron absorption American Journal of Clinical Nutrition 65, 970976.CrossRefGoogle ScholarPubMed
Feng, M, Van der, Does, D, and, Bantjes, A (1995) Preparation of apolactoferrin with a very low iron saturation Journal Dairy Science 78, 23522357.CrossRefGoogle ScholarPubMed
Flynn, A (1992) Minerals and trace elements in milk Advances in Food and Nutrition Research 36, 209252.CrossRefGoogle ScholarPubMed
Fox, PF and, McSweeney, PLH (1998) Milk proteins Dairy Chemistry and Biochemistry 146238.Google Scholar
Gaucheron, F, Famelart, MH and, Le Graet, Y (1996) Iron-supplement caseins: preparation, physiochemical characterization and stability Journal of Dairy Research 63, 233243.CrossRefGoogle Scholar
Gotelli, C, Gotelli, M, Boccio, J, Zubillaga, M, Caro, R, Garcia, del, Rio, H and, Weill, R (1996) Bioavailability of microencapsulated ferrous sulfate in fluid milk studies in human beings Apptla 46, 239245.Google ScholarPubMed
Gutch, IV (1994) Determination of chelating agents in fertilisers by ion chromatography Journal of Chromatography 671, 359365.Google Scholar
Hidalgo, FJ, Alaiz,, M &, Zamora, R (1997) Antioxidative activity of nonenzymatically browned proteins. The Maillard Reaction Abstract Book: Sixth Symposium of The Maillard Reaction, London July 1997, p. 104.Google Scholar
Hirai, Y, Permyakov, EA and, Berliner, LJ (1992) Proteolytic digestion of α-lactalbumin: physiological implications Journal of Protein Chemistry 11, 5157.CrossRefGoogle ScholarPubMed
Holt, C, Dalgleish, DG and, Jenness, R (1981) Calculation of the ion equilibria in milk diffusate and comparison with experiment Analytical Biochemistry 113, 154163.CrossRefGoogle ScholarPubMed
Homma, S, Murata, M, Teresawa, N, Lee, V, JO'Brien, , HE, Nursten, MJC, Crabbe and, J, Ames (1998) Characterisation of food melanoidin The Maillard Reaction in Foods and Medicine.Google Scholar
Hurrell, RF, Lynch, SR, Trinidad, TP, Dassenko, SA and, Cook, JD (1989) Iron absorption in humans as influenced by milk proteins American Journal of Clinical Nutrition 49, 546552.CrossRefGoogle ScholarPubMed
Jackson, LS and, Lee, K (1992) The effect of dairy products on iron availability Critical Reviews In Food Science And Nutrition 31, 259270.CrossRefGoogle ScholarPubMed
Juillerat, M, Baechler, R, Berrocal, R, Chanton, S, Scherz, JC and, Jost, R (1989) Tryptic phosphopeptide from whole casein. 1. Preparation and analysis by fast protein liquid chromatography Journal of Dairy Research 56, 603611.CrossRefGoogle Scholar
Kahala, M, Pahkala, E and, Pilhlanto-Leppala, A (1993) Peptides in fermented Finnish milk products Agricultural Science 2, 379386.Google Scholar
Kawakami, H, Dosako, S and, Nakajima, I (1993) Effect of lactoferrin on iron solubility under neutral conditions Bioscience Biotechnology and Biochemistry 57, 13761377.CrossRefGoogle Scholar
Kontoghiorghes, G (1986) Iron mobilisation from lactoferrin by chelators at physiological pH Biochimica et Biophysica Acta 882, 267270.CrossRefGoogle ScholarPubMed
Korhonen, HJ, Syväoja, E-L, Rokka, T, Tuominen, J, Sütas, Y &, Isolauri, E (1994) Release of immunoactive peptides by enzymatic proteolysis of bovine milk proteins. 24th International Dairy Congress, Melbourne, Australia.Google Scholar
Leclerc, E; 1997 Enzymatic hydrolysis of caprine and bovine whey proteinsMSc thesis.Google Scholar
Loennerdal, B, CABarth, and ESchlimme (1989) Milk proteins and metabolic requirements of trace elements, minerals and vitamins Milk Proteins; Nutritional, Clinical, Functional and Technological Aspects 8796.CrossRefGoogle Scholar
Loennerdal, B, and, WHeird (1991) Iron intake and requirements interactions with other trace elements Nutritional Needs of the Six to Twelve Old Infant 199211.Google Scholar
Loennerdal, B, Yuan, M and, Huang, S (1994) Calcium, iron, zinc, copper and manganese bioavailability from infant formulas and weaning diets assessed in rat pups Nutrition Research 14, 15351548.CrossRefGoogle Scholar
Meisel, H and, Schlimme, E (1990) Milk proteins: precursors of bioactive peptides Trends in Foods Science and Technology 41, 143.Google Scholar
Meisel, H and, Schlimme, E (1993) Bindungsvermögen für Calcium und Eisen verschiedener Fractionen aus der in vitro-proteolyse von Casein Kieler Milchwirtschaftliche Forshungsberichte 45, 235243.Google Scholar
Meisel, H and, Schlimme, E (1996) Bioactive peptides derived from milk proteins: ingredients for functional foods? Kieler Milchwirtschaftliche Forshungsberichte 48, 343357.Google Scholar
Miller, DD, Schricker, BR, Rasmussen, RR and, Van Campen, D (1981) An in vitro method for estimation if iron availability from meals American Journal of Clinical Nutrition 34, 22482256.CrossRefGoogle Scholar
Miller, MJS, Witherly, SA and, Clark, DA (1990) Casein: a milk protein with diverse biologic consequences Proceeding for the Society for Experimental Biology and Medicine 195, 143159.CrossRefGoogle ScholarPubMed
Mossini, V, Feather, MS, JO'Brien, , HE, Nursten, MJC, Crabbe and, J, Ames (1998) Metal-binding properties of glycated proteins and amino acids The Maillard Reaction in Foods and Medicine 429.CrossRefGoogle Scholar
Nagasako, Y, Saito, H, Tamura, Y, Shimamura, S and, Tomita, M (1993) Iron-binding properties of bovine lactoferrin in iron-rich solution Journal of Dairy Science 76, 18761881.CrossRefGoogle ScholarPubMed
Pantako, TO, Passos, M, Desrosiers, T and, Amiot, J (1992) Effects des protéines laitéres sur l'absoption de Fe, du Mg et du Zn mesurée par les variations temporelles de leurs teneurs dans l'aorte et la veine porte chez le rat Le Lait 72, 553573.CrossRefGoogle Scholar
Paulsson, M; 1990 Thermal denaturation and gelation of whey proteins and their adsorption at the air\water interfacePhD thesis.Google Scholar
Peres, JM, Bouhallab, S, Bureau, F, Maubois, JL, Arhan, P and, Bouglé, D (1997) Absorption digestive du fer lié au caseinophosphopeptide 1–25 de la β-caséine Le Lait 77, 433440.CrossRefGoogle Scholar
Pilhlanto-Leppala, A, Antila, P, Mäntsälä, P and, Hellman, J (1994) Opioid peptides produced by in-vitro proteolysis of bovine caseins International Dairy Journal 4, 291301.CrossRefGoogle Scholar
Reynolds, E (1987) Phosphopeptides. Patent no. WO 87/07615. University of Melbourne.Google Scholar
Reynolds, E, Riley, PF and, Adamson, N (1994) A selective precipitation purification procedure for multiple phophoseryl-containing peptides and methods for their identification Journal of Analytical Biochemistry 217, 277284.CrossRefGoogle ScholarPubMed
Sanyal, A, Hirsch, JI and, Moore, EW (1990) Premicellar taurocholate avidly binds ferrous (Fe2+) iron: a potential physiological role for bile salts in iron absorption Journal of Laboratory and Clinical Medicine 116, 7686.Google Scholar
Sanyal, AJ, Hirsch, JI and, Moore, EW (1992) High-affinity binding is essential for enhancement of intestinal iron and calcium uptake by bile salts Gastroenterology 102, 19972005.CrossRefGoogle ScholarPubMed
Schlimme, E and, Meisel, H (1995) Bioactive peptides derived from milk proteins: structural, physiological and analytical aspects Die Nahrung 39, 120.CrossRefGoogle ScholarPubMed
Schaafsma, G (1997) Bioavailability of calcium IDF Bulletin 322, 2033.Google Scholar
Srinivasan, A, Gopalan, A, Ramabadran, S, JO'Brien, , HE, Nursten, MJC, Crabbe and, J, Ames (1998) Influence of Maillard browning on cow and buffalo milk and milk proteins. A comparative study The Maillard Reaction in Foods and Medicine 445.Google Scholar
Svenning, C, Bougault, P, Langsrud, T and, Vegarud, GE (1999) Whey proteins from goat milk; effect of pasteurisation and coagulation (renneting/acid precipitation) and mineral binding Scandinavian Journal of Nutrition 43, (Suppl. 34), 90s.Google Scholar
Svenning, C, Langsrud, T &, Vegarud, GE (1999 a) The impact of minerals in whey studies of binding/release from protein. COST ACTION 96 Proceeding, Interaction of food matrix with small ligands influencing flavour and texture 6, p. 3135, European Community, Belgium.Google Scholar
Svenning, C &, Vegarud, GE (1998) Proceeding 'Dairy Foods in Health' IDF Nutrition Week, New Zealand, p. 12.Google Scholar
Swaisgood, HE, and, PFFox (1992) Chemistry of the caseins 63110 Advanced Dairy Chemistry Vol. 1,.Google Scholar
Swaisgood, HE and, Catignani, GL (1991) Protein digestibility: in vitro methods of assessment Advanced Food Nutrition Reseach 35, 185236.CrossRefGoogle ScholarPubMed
Ternus, M (1996) Food fortification: it can be a lifesaver. But are we going too far in creating no-brain super foods? Environmental Nutrition 19, 912.Google Scholar
Tome, D, Dumontier, AM, Hautefeuille, M and, Desjeux, JF (1987) Opiate activity and transepithelial passage of intact beta-casomorphins in rabbit ileum American Journal of Physiology 6, g737g744.Google Scholar
Vassilakos, N, Arnebrandt, T and, Rundgren, J (1993) In vitro interactions of delmopinol hydrocloride with salivary films adsorbed at solid films/liquid interfaces Caries Research 27, 176182.CrossRefGoogle Scholar
Vegarud, GV, Svenning, C, Molland, T and, Langsrud, T (1991) Enzymatic hydrolysis of milk proteins improved functional properties Mededelingen van de Faculteit Landbouwwetenschappen, Rijksuniversiteit Gent 56, 16491653.Google Scholar
Walstra, P, Jenness, R, PWalstra, and RJenness (1984) Proteins Dairy Chemistry and Physics 98122.Google Scholar
West, D (1986) Structure and function of phosphorylated residues of casein Journal of Dairy Research 53, 333352.CrossRefGoogle ScholarPubMed
Zhang, P and, Allan, J (1995) Free zinc concentration in bovine milk measurements by analytical affinity chromatography with immobilised metallothionein Biological Trace Elements Research 50, 135148.CrossRefGoogle ScholarPubMed