Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T15:45:28.077Z Has data issue: false hasContentIssue false

Microbial thiamin metabolism in the rumen simulating fermenter (RUSITEC): the effect of acidogenic conditions, a high sulfur level and added thiamin

Published online by Cambridge University Press:  09 March 2007

L. Alves De Oliveira
Affiliation:
Equipe associée INRA de Physiopathologie du rumen, Ecole Nationale Vétérinaire de Lyon, BP 83, 69280 Marcy l'Etoile, France
C. Jean-Blain
Affiliation:
Equipe associée INRA de Physiopathologie du rumen, Ecole Nationale Vétérinaire de Lyon, BP 83, 69280 Marcy l'Etoile, France
S. Komisarczuk-Bony
Affiliation:
Equipe associée INRA de Physiopathologie du rumen, Ecole Nationale Vétérinaire de Lyon, BP 83, 69280 Marcy l'Etoile, France
A. Durix
Affiliation:
Equipe associée INRA de Physiopathologie du rumen, Ecole Nationale Vétérinaire de Lyon, BP 83, 69280 Marcy l'Etoile, France
C. Durier
Affiliation:
Laboratoire de Biométrie INRA, Route de St Cyr – 78026 Versailles Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of acidogenic conditions, a high S level and the addition of thiamin on the rumen microbial metabolism of thiamin were investigated in vitro in a semi-continuous fermenter (RUSITEC), using a factorial design. Acidogenic conditions were obtained by simultaneously increasing the starch: cellulose ratio and the amount of solid substrate fed, and by decreasing the buffering capacity of the liquid phase of the fermenter. S in the form of sulfate was supplied at two levels, one corresponding to a control amount of S (2 g/kg dietary DM), the second to an excess (5 g/ kg DM) which is sufficient to trigger cerebrocortical necrosis (CCN) when used in vivo. Acidogenic conditions decreased the pH of the fermenters, CH4 production and cellulose digestibility, increased the short-chain fatty acid production, but had no effect on thiamin production. The high S level enhanced the production of sulfide considerably, had no effect on the microbial metabolism of energy and N, and decreased thiamin production (326 ν. 266 nmol/d). The added thiamin was rapidly converted into phosphorylated compounds which largely decreased the apparent synthesis of this vitamin by the rumen microflora. The total thiamin flow was increased by added thiamin. In no case was thiaminase activity in the fermenter liquid phase significantly modified. The high level of S induced only a limited decrease of total thiamin flow. Consequently, it is unlikely that the investigated factors could be considered to be high risk factors for the thiamin-dependent CCN.

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Alves, de, Oliveira, L., Jean-Blain, C., Dal Corso, V., Bénard, V., Durix, A. & Komisarczuk-Bony, S. (1996) Effect of a high sulphur diet on the rumen microbial activity and rumen thiamin status in sheep receiving a semi-synthetic, thiamin-free diet. Reproduction, Nutrition, Développement 36, 3142.CrossRefGoogle Scholar
Bechdel, S. I., Honeywell, H. E., Dutcher, R. A. & Knutson, M. H. (1928) Synthesis of vitamin B in the rumen of the cow. Journal of Biological Chemistry 80, 231238.CrossRefGoogle Scholar
Bick, S., Breves, G. & Höller, H. (1978) Netto synthese von mikrobiellem Protein und Thiamin im Panseninhalt eiweissfrei ernährter Schafe bei unterschiedlichen Substrat-und Schwefelkonzentrationen in vitro (In-vitro net synthesis of microbial protein and thiamin in rumen contents of sheep adapted to a protein-free diet: effects of varying levels of substrate and sulphur). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 41, 817.CrossRefGoogle Scholar
Bousquet, B., Fiet, J., Julien, R., Bon, R. & Dreux, C. (1971) Application aux milieux biologiques de la réaction de l'urée avec la diacétylmonoxime sensibilisée par la thiosemicarbazide (Application of urea reaction with diacetylmonoxim sensitized by thiosemicarbazide to biological media). Annales de Biologie Clinique 29, 415422.Google Scholar
Boyd, J. W. (1985) Studies on thiaminase I activity in ruminant faeces and rumen bacteria. Journal of Agricultural Science, Cambridge 104, 637642.CrossRefGoogle Scholar
Boyd, J. W. & Walton, J. R. (1977) Cerebrocortical necrosis in ruminants: an attempt to identify the source of thiaminase in affected animals. Journal of Comparative Pathology 87, 581589.CrossRefGoogle ScholarPubMed
Bray, A. C. (1964) The recycling and excretion of sulphur in sheep. Proceedings of the Australian Society of Animal Production 5, 336344.Google Scholar
Brent, B. E. & Bartley, E. E. (1984) Thiamin and niacin in the rumen. Journal of Animal Science 59, 813822.CrossRefGoogle ScholarPubMed
Breves, G., Brandt, M., Hoeller, H. & Rohr, K. (1981) Flow of thiamin to the duodenum in dairy cows fed different rations. Journal of Animal Science 96, 587591.Google Scholar
Breves, G., Höller, H., Harmeyer, J. & Martens, H. (1980) Thiamin balance in the gastrointestinal tract of sheep. Journal of Animal Science 51, 11771181.CrossRefGoogle ScholarPubMed
Candau, M. & Kone, L. (1980) Influence de la thiamine sur la protéosynthèse bactérienne chez le mouton (In vitro effect of thiamin on rumen microbial metabolism). Reproduction, Nutrition, Développement 20, 16951699.CrossRefGoogle Scholar
Cline, J. D. (1969) Spectrophotometric determination of hydrogen sulphide in natural waters. Limnology and Oceanography 14, 454458.CrossRefGoogle Scholar
Counotte, G. H. M. & Prins, R. A. (1981) Regulation of lactate metabolism in the rumen. Veterinary Research Communications 5, 101115.CrossRefGoogle ScholarPubMed
Cummings, B. A., Gould, D. H., Caldwell, D. R. & Hamar, D. W. (1995 a) Identity and interactions of rumen microbes associated with dietary sulphate-induced polioencephalomalacia in cattle. American Journal of Veterinary Research 56, 13841389.CrossRefGoogle Scholar
Cummings, B. A., Gould, D. H., Caldwell, D. R. & Hamar, D. W. (1995 b) Ruminal microbial alterations associated with sulphide generation in steers with dietary sulphate-induced polioencephalomalacia. American Journal of Veterinary Research 56, 13901395.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1977) Design and development of a long term rumen simulation technique (RUSITEC). British Journal of Nutrition 38, 371384.CrossRefGoogle ScholarPubMed
Demeyer, D. I. & Van Nevel, C. J. (1979) Effect of defaunation on the metabolism of rumen micro-organisms. British Journal of Nutrition 42, 515524.CrossRefGoogle Scholar
Edwin, E. E. & Jackman, R. (1973) Ruminal thiaminase and tissue thiamine in cerebrocortical necrosis. Veterinary Record 92, 640641.CrossRefGoogle ScholarPubMed
Erflé, J. D., Boila, R. J., Teather, R. M., Mahadevan, S. & Sauer, F. D. (1982) Effect of pH on fermentation characteristics and protein degradation by rumen microorganisms in vitro. Journal of Dairy Science 65, 14571464.CrossRefGoogle Scholar
Gooneratne, S. R., Olkowski, A. A. & Christensen, D. A. (1989) Sulphur-induced polioencephalomalacia in sheep: some biochemical changes. Canadian Journal of Veterinary Research 53, 462467.Google Scholar
Grigat, G. A. & Mathison, G. W. (1982) Thiamin supplementation of all-concentrate diet for feedlot steers. Canadian Journal of Animal Science 62, 807819.CrossRefGoogle Scholar
Gutmann, I. & Wahlefeld, A. W. (1974) L(+) lactate: determination with lactate dehydrogenase and NAD. In Methods of Enzymatic Analysis, 2nd ed., Vol. 3, pp. 14641468 [Bergmeyer, H. U. editor]. New York: Academic Press.Google Scholar
Hamlen, H., Clark, E. & Jansen, E. (1993) Polioencephalomalacia in cattle consuming water with elevated sodium sulphate levels: a herd investigation. Canadian Journal of Animal Science 34, 153158.Google Scholar
Harmeyer, J. & Kollenkirchen, U. (1989) Thiamin and niacin in ruminant nutrition. Nutrition Research Reviews 2, 201225.CrossRefGoogle ScholarPubMed
HöllerH., El H., El, Hindi, H. & Breves, G. (1978) Einfluss von Thiamin (vitamin B1) auf mikrobielles Wachstum und Bildung von flüchtlichen Fettsäuren in vitro im Pansensaft proteinfrei ernährter Schafe (Effect of thiamin (vitamin B1)) on microbial net growth and production of volatile fatty acids in vitro in rumen liquid of sheep fed a protein-free diet. Deutsche Tierärztliche Wochenschrift 85, 200202.Google Scholar
Hoover, W. H., Kincaid, C. R., Varga, W. V., Thayne, W. V. & Junkins, L. L. (1984) Effects of solids and liquid flows on fermentation in continuous cultures. IV. pH and dilution rate. Journal of Animal Science 58, 692699.CrossRefGoogle Scholar
Hubbert, F., Cheng, E. & Burroughs, W. (1958) Mineral requirements of rumen microorganisms for cellulose digestion in vitro. Journal of Animal Science 17, 559568.CrossRefGoogle Scholar
Johnson, W. H., Meiske, J. C. & Goodrich, R. D. (1968) Influence of high levels of two forms of sulphate on lambs. Journal of Animal Science 27, 1166.Google Scholar
Jouany, J. P. (1982) Volatile fatty acids and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermenter contents. Sciences des Aliments 2, 131144.Google Scholar
Kandylis, K. (1984) The role of sulphur in ruminant nutrition. A review. Livestock Production Science 11, 611624.CrossRefGoogle Scholar
Kennedy, L. G., Mitchell, G. E. & Little, C. O. (1971) Influence of sulphur on in vitro starch digestion by rumen microorganisms. Journal of Animal Science 32, 359363.CrossRefGoogle ScholarPubMed
Kumaresan, A. (1976) Interactions entre le zinc et les microorganisms du rumen chez le mouton recevant de l'urée comme source unique d'azote (Interaction between zinc and rumen microorganisms in sheep fed urea as sole nitrogen source). PhD Thesis, University of Toulouse.Google Scholar
Linklater, K. A., Dyson, D. A. & Morgan, K. T. (1977) Faecal thiaminase in clinically normal sheep associated with outbreaks of polioencephalomalacia. Research in Veterinary Science 22, 308.CrossRefGoogle ScholarPubMed
Loew, F. M. (1975) A thiamin responsive polioencephalomalacia in tropical and nontropical livestock production systems. World Review of Nutrition and Dietetics 20, 168183.CrossRefGoogle Scholar
Low, J. C., Scott, P. R., Howie, F., Lewis, M., FitzSimons, J. & Spence, J. A. (1996) Sulphur-induced polioencephalomalacia in lambs. Veterinary Record 138, 327329.CrossRefGoogle ScholarPubMed
Lusby, K. S. & Brent, B. E. (1972) An experimental model for polioencephalomalacia. Journal of Animal Science 35, 270.Google Scholar
McAllister, M. M., Gould, D. H. & Hamar, D. W. (1992) Sulphide-induced polioencephalomalacia in lambs. Journal of Comparative Pathology 106, 267278.CrossRefGoogle ScholarPubMed
Manka, D. P. (1964) Complete gas chromatographic analysis of fixed gases with one detector using argon as gas carrier. Analytical Chemistry 36, 480482.CrossRefGoogle Scholar
Miller, B. L., Meiske, J. C. & Goodrich, R. D. (1986) Effects of grain source and concentrate level on B-vitamin production and absorption in steers. Journal of Animal Science 62, 473483.CrossRefGoogle Scholar
Miller, T. L. (1978) The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Archives of Microbiology 117, 145152.CrossRefGoogle ScholarPubMed
Morgan, K. T. & Lawson, G. H. K. (1974) Thiaminase type I producing bacilli and ovine polioencephalomalacia. Veterinary Record 95, 361363.CrossRefGoogle ScholarPubMed
Murphy, M. (1993) The pH fluctuation in the rumen of lactating cows. Acta Veterinaria Scandinavica 89, 164165.Google Scholar
Nakamura, I., Oginoto, K., Imai, S. & Nakamura, M. (1989) Production of lactic acid isomers and change of microbial features in the rumen of feedlot cattle. Journal of Animal Physiology and Animal Nutrition 61, 139144.CrossRefGoogle Scholar
Newell, P. C. & Tucker, R. G. (1966) The control mechanism of thiamine biosynthesis. Biochemical Journal 100, 517524.CrossRefGoogle ScholarPubMed
Olkowski, A. A., Laarveld, B., Patience, J. F., Francis, S. I. & Christensen, D. A. (1993) The effect of sulphate on thiamine-destroying activity in rumen content cultures in vitro. International Journal for Vitamin and Nutrition Research 63, 3844.Google ScholarPubMed
Qi, K., Lu, C. D. & Owens, F. N. (1993) Sulfate supplementation of growing goats: effects on performance, acid-base balance, and nutrient digestibilities. Journal of Animal Science 71, 15791587.CrossRefGoogle ScholarPubMed
Raisbeck, M. F. (1982) Is polioencephalomalacia associated with high sulphate diets? Journal of the American Veterinary Medical Association 180, 13031305.Google Scholar
Rousseaux, C. G., Olkowski, A. A., Chauvet, A., Gooneratne, S. R. & Christensen, D. A. (1991) Ovine polioencephalomalacia associated with dietary sulphur intake. Journal of Veterinary Medicine 38A, 229239.CrossRefGoogle Scholar
Rumsey, T. S. (1978) Effects of dietary sulphur addition and synovex-S ear implants on feedlot steers fed an all-concentrate finishing diet. Journal of Animal Science 46, 463477.CrossRefGoogle Scholar
Russell, J. B. & Dombrowski, D. B. (1980) Effect of pH on the efficiency of growth by pure culture. Applied and Environmental Microbiology 39, 604.CrossRefGoogle Scholar
Shi, Y. & Weiner, P. J. (1992) Response surface analysis of effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Applied and Environmental Microbiology 58, 25832591.CrossRefGoogle ScholarPubMed
Shreeve, J. E. & Edwin, E. E. (1974) Thiaminase-producing strains of Cl. sporogenes associated with outbreaks of cerebrocortical necrosis. Veterinary Record 13, 330.CrossRefGoogle Scholar
Sorbö, B. (1987) Sulphate: turbidimetric and nephelometric methods. Methods in Enzymology 143, 36.CrossRefGoogle ScholarPubMed
Statistical, Analysis Systems (1985) SAS User's Guide, Statistics. Cary, NC: SAS Institute Inc.Google Scholar
Steinberg, W. & Kaufmann, W. (1977) Untersuchungen zur bakteriellen Thiaminsynthese in den Vormägen von Milchkühen (Investigations on the bacterial thiamine synthesis in the rumen of dairy cows). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 39, 289301.CrossRefGoogle Scholar
Thomas, K. W. (1986) The effect of thiaminase-induced subclinical thiamine deficiency on growth of weaner sheep. Veterinary Research Communications 10, 125141.CrossRefGoogle ScholarPubMed
Tournut, J., Labie, Ch. & Espinasse, J. (1967) Identification en France de la ‘Nécrose du Cortex Cérébral’ (NCC) chez plusieurs espèces de ruminants (Cerebrocortical necrosis identification in several ruminant species in France). Revue de Médecine Vétérinaire 118, 883896.Google Scholar
Weatherburn, M. W. (1967) Phenol hypochlorite reaction for determination of ammonia. Analytical Chemistry 89, 971974.CrossRefGoogle Scholar
Wolin, J. M. & Miller, T. L. (1983) Interactions of microbial populations in cellulose fermentation. Federation Proceedings 42, 109113.Google ScholarPubMed