Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T04:10:25.707Z Has data issue: false hasContentIssue false

Methionine deficiency and iron retention in the rat*

Published online by Cambridge University Press:  09 March 2007

Nathan Kaufman
Affiliation:
Department of Pathology, Duke University Medical Center, Durham, NC, USA
Janis V. Klavins
Affiliation:
Department of Pathology, Duke University Medical Center, Durham, NC, USA
Thomas D. Kinney
Affiliation:
Department of Pathology, Duke University Medical Center, Durham, NC, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Methionine-deficient diets were given to rats for 4 weeks. 2. This resulted in a decrease in total body iron, due to a decrease either in Fe absorption or Fe retention. 3. There was inhibition of growth, development of anaemia and a shift of body Fe to the liver. 4. There were no histological alterations which could be interpreted as specific to methionine deficiency. 5. These findings were different from reports of effects of ethionine in which there is an increased Fe absorption and various tissue alterations, including pancreatic acinar and liver damage.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Artom, C. (1959). J. biol. Chem. 234, 2259.CrossRefGoogle Scholar
Carraway, W. T. (1963). Clin. Chem. 9, 188.CrossRefGoogle Scholar
Conney, A. H., Miller, E. C. & Miller, J. A. (1956). Cancer Res. 16, 350.Google Scholar
Conney, A. H., Miller, E. C. & Miller, J. A. (1957). J. biod. Chem. 228, 753.CrossRefGoogle Scholar
De Monterice, B., Kaufman, N., Kinney, T. D. & Klavins, J. V. (1961). Archs Path. 72, 550.Google Scholar
Farber, E. & Corban, M. S. (1958). J. biod. Chem. 233, 625.CrossRefGoogle Scholar
Farber, E. & Ichinose, H. (1957). Proc. Am. Ass. Cancer Res. 2, 199.Google Scholar
Farber, E. & Popper, H. (1950). Proc. Soc. exp. Biol. Med. 74, 838.CrossRefGoogle Scholar
Freedland, R. A. & Harper, A. E. (1958). J. biod. Chem. 233, 1041.CrossRefGoogle Scholar
Glynn, L. E., Himsworth, H. P. & Neuberger, A. (1945). Br. J. exp. Path. 26, 326.Google Scholar
Gomori, G. (1936). Am. J. Path. 12, 655.Google Scholar
Hegsted, D. M., Mills, R. C., Elvehjem, C. A. & Hart, E. B. (1941). J. biol. Chem. 138, 459.CrossRefGoogle Scholar
Jensen, D., Chaikoff, I. L. & Tarver, H. (1951). J. biol. Chem. 192, 395.CrossRefGoogle Scholar
Kinney, T. D., Kaufman, N. & Klavins, J. V. (1955). J. exp. Med. 102, 151.CrossRefGoogle Scholar
Kinney, T. D., Kaufman, N., Klavins, J. V., Marsters, R. W. & Tseng, C. Y. (1960). Am. J. Path. 37, 137.Google Scholar
Kitzes, G., Elvehjem, C. A. & Schuette, H. A. (1944). J. biol. Chem. 155, 653.CrossRefGoogle Scholar
Klavins, J. V., Kinney, T. D. & Kaufman, N. (1959). J. Nutr. 67, 363.CrossRefGoogle Scholar
Klavins, J. V., Kinney, T. D. & Kaufman, N. (1965). Am. J. Path. 46, 969.Google Scholar
Koch-Weser, D. & Popper, H. (1952). Proc. Soc. exp. Biol. Med. 79, 34.CrossRefGoogle Scholar
Lee, N. D. & Williams, R. H. (1952). Biochim. biophys. Acta 9, 698.CrossRefGoogle Scholar
Perls, M. (1867). Virchows Arch. path. Anat. Physiol. 39, 42.CrossRefGoogle Scholar
Simpson, M. V., Farber, E. & Tarver, H. (1950). J. biol. Chem. 182, 81.CrossRefGoogle Scholar
Stekol, J. A. & Weiss, K. (1949). J. biol. Chem. 179, 1049.CrossRefGoogle Scholar