Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T02:13:50.207Z Has data issue: false hasContentIssue false

The metabolism of oleic, linoleic and linolenic acids by sheep with reference to their effects on methane production

Published online by Cambridge University Press:  09 March 2007

J. W. Czerkawski
Affiliation:
Hannah Dairy Research Institute, Ayr
K. L. Blaxter
Affiliation:
Hannah Dairy Research Institute, Ayr
F. W. Wainman
Affiliation:
Hannah Dairy Research Institute, Ayr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Nine experiments, each with one of six sheep with cannulated rumens given a constant diet of dried grass, were made in which oleic, linoleic or linolenic acid was infused into the rumen and energy and lipid metabolism were measured. One experiment was made in which palmitic acid was given. 2. Judged by changes in the composition of isolated fatty acids, the unsaturated fatty acids were hydrogenated in the rumen. An increase in the excretion of lipid in the faeces occurred when the unsaturated acids were given. The heat of combustion of the faeces increased by 12.6±3.0 kcal/100 kcal fatty acid, of which 94% was accounted for by the additional lipid. 3. Methane production fell when the unsaturated fatty acids were infused, the decreases being 13.8±1.6 kcal CH4;/I00 kcal oleic acid, 14.2±1.5 kcal CH4/100 kcal linoIeic acid and 16.4±1.3 kcal CH4/100 kcal Iinolenic acid. The introduction of a double bond into an n-alkyl acid was calculated to reduce methane production by 0.24±0.09 moles/mole double bond. 4. Because the depression of methane production on infusing the fatty acids exceeded the increase in the heat of combustion of the faeces, the metabolizable energy of the fatty acids was 104.1±5.3% of their heat of combustion. 5. The efficiencies with which the fatty acids were used to promote energy retention were 74.6±5.7% for oleic acid, 79.2±2.0 % for linoleic acid and 82.5±3.0% for linolenic acid. These efficiencies agreed with those noted in experiments by others with rats, horses and pigs given glycerides, but were higher than those noted by others when glycerides were added to the diets of ruminants.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

REFERENCES

Armstrong, D. G., Blaxter, K. L. & Graham, N. McC. (1957). Br. J. Nutr. 11, 392.CrossRefGoogle Scholar
Armstrong, D. G., Blaxter, K. L. & Graham, N. Mc. (1958). Publs Eur. Ass., Anim. Prod. no. 8, P. 157.Google Scholar
Blaxter, K. L. & Clapperton, J. L. (1965). Br. J. Nutr. 19, 511.CrossRefGoogle Scholar
Blaxter, K. L. & Rook, J. A. F. (1953). Br. J. Nutr. 7, 83.CrossRefGoogle Scholar
Brouwer, E. (1965). Publs Eur. Ass. Anirn. Prod. no. 11, p. 441.Google Scholar
Carroll, E. J. & Hungate, R. E. (1955). Archs Biochem. 56, 525.CrossRefGoogle Scholar
Crampton, E. W. & Maynard, L. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Czerkawski, J. W. & Blaxter, K. L. (1965). Biochem. J. 96, 25C.CrossRefGoogle Scholar
Fingerling, G., Eisenkolbe, P., Hientsch, B., Just, M. & Knaut, G. (1938). Z. Tierernähr. Futtermittelk 1, 183.Google Scholar
Fingerling, G., Köhler, A. & Reinhardt, F. (1914). Landwn VersStnen 84, 149.Google Scholar
Fingerling, G., Nehring, K. & Franke, E. R. (1956). In Festschrift anlässlich des 100 jährigen Bestehens der Landwirtschaftlichen Versuchsstation Leipzig-Möckern, Vol. 3. Untersuchungen über die Verwertung von reinen Nährstoffen and Futterstoffen mit Hilfe von Respirationsversuchen, p. 255. [Nehring, K., editor.] Berlin: Deutscher Bauernverlag.Google Scholar
Folch, J., Lees, M. & Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Franke, E. R. (1958). Beiträge aus der Agrikulturchemie zu Problemen der Forschung und Proxis. Wiss. Abhandlungen no. 37, p. 101. Dtsch. Akad. der Landwirt. Berlin.Google Scholar
Garton, G. A., Lough, A. K. & Vioque, E. (1961). J. gen. Microbiol. 25, 215.CrossRefGoogle Scholar
Heim, G. (1956). Die Stofliche and energetische Wirkung einer Eiweisszulage sowie einer Zulage bestehend aus Stärke Fett and Eiweiss beim ausgewachsenen Schaf. Diss. Eid. Tech, Hochschule Zurich.Google Scholar
Hoffmann, L., Schiemann, R. & Nehring, K. (1960). Arch. Tierernähr. 10, 299.CrossRefGoogle Scholar
Hoffmann, L., Schiemann, R. & Nehring, K. (1961). Arch. Tierernähr. 11, 337.CrossRefGoogle Scholar
James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
Kates, M. (1964). J. Lipid Res. 5, 132.CrossRefGoogle Scholar
Kellner, O. & Köhler, A. (1900). Landwn VersStnen 53, I.Google Scholar
Kharasch, M. S. (1929). Bur. Stand. J. Res. 2, 359.CrossRefGoogle Scholar
Kriss, M., Forbes, E. B. & Miller, R. C. (1934). J. Nutr. 8, 509.CrossRefGoogle Scholar
Nehring, K., Hoffmann, L., Schiemann, R. & Jentsch, W. (1963). Arch. Tierernähr. 13, 193.CrossRefGoogle Scholar
Nehring, K., Jentsch, W. & Schiemann, R. (1961). Arch. Tierernähr. 11, 233.CrossRefGoogle Scholar
Schiemann, R., Hoffmann, L. & Nehring, K. (1961). Arch. Tierernähr, 11, 265.CrossRefGoogle Scholar
Vercoe, J. E. & Blaxter, K. L. (1965). Br. J. Nutr. 19, 523.CrossRefGoogle Scholar
Wainman, F. W. & Blaxter, K. L. (1958). Publs Eur. Ass. Anim. Prod. no. 8, p. 85.Google Scholar
Ward, P. F. V., Scott, T. W. & Dawson, R. M. C. (1964). Biochem. J. 92, 60.CrossRefGoogle Scholar
Williams, W. F., Hoernicke, H., Waldo, D. R., Flatt, W. P. & Allison, M. J. (1963). J. Dairy Sci. 46, 992.CrossRefGoogle Scholar