Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T18:20:17.745Z Has data issue: false hasContentIssue false

The metabolism of methionine in silage-fed sheep

Published online by Cambridge University Press:  09 March 2007

Margaret Gill
Affiliation:
Sheep Husbandry Department, Massey University, Palmerston North, New Zealand
M. J. Ulyatt
Affiliation:
Applied Biochemistry Division, DSIR, Palmerston North, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. L-[U-14C]methionine was used to study methionine metabolism in sheep fed on untreated silage, silage treated with formaldehyde and untreated silage plus intraperitoneal infusion of L-methionine.

2. Over-all the values ranged from 0.43 to 0.86 mmol/h for methionine turnover rate, from 13.3 to 19.9 for the percentage of methionine oxidized to carbon dioxide and from 245 to 1089 μmol for methionine pool size.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Annison, E. F. (1975). Tracer Studies on Non-Protein Nitrogen for Ruminants, p. 141. Vienna: Internationa Atomic Energy Agency.Google Scholar
Armstrong, D. G. & Annison, E. F. (1973). Proc. Nutr. Soc. 32, 107.CrossRefGoogle Scholar
Barry, T. N., Fennessy, P. F. & Duncan, S. J. (1973). N.Z. Jl agric. Res. 16, 64.CrossRefGoogle Scholar
Cluley, H. J. (1962). Analyst, Lond. 87, 170.CrossRefGoogle Scholar
Gill, M. (1976). A study of the amino acid status of sheep fed silage, with particular reference to methionine. Ph D Thesis, Massey University, New Zealand.Google Scholar
Gill, M., Ulyatt, M. J. & Barry, T. N. (1978). N.Z. Jl agric. Res. (In the Press.)Google Scholar
Harper, A. E. (1964). In Mammalian Protein Metabolism, vol. 2, p. 87 [Munro, H. N. and Allison, J. B. editors]. London: Academic Press.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1973). J. agric. Sci., Camb. 81, 391.CrossRefGoogle Scholar
Hutton, K. & Annison, E. F. (1972). Proc. Nutr. Soc. 31, 151.CrossRefGoogle Scholar
Jeppsson, J. O. & Karlsson, I. M. (1972). J. Chromat. 72, 93.CrossRefGoogle Scholar
Lewis, D. & Mitchell, R. M. (1976). In Protein Metabolism and Nutrition, p. 417 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H. editors]. London, Boston: Butterworths.Google Scholar
Nimrick, K., Hatfield, E. E., Kaminski, J. & Owens, F. N. (1970). J. Nutr. 100, 1293.CrossRefGoogle Scholar
Reis, P. J., Tunks, D. A. & Downes, A. M. (1973). Aust. J. biol. Sci. 26, 249.CrossRefGoogle Scholar
Shipley, R. A. & Clark, R. E. (1972). In Tracer Methods for in vivo Kinetics, p. 239. New York and London: Academic Press.Google Scholar
Ulyatt, M. J., Webster, D., Henderson, B. S. & Egan, A. R. (1978). N.Z. Jl agric. Res. (In the Press.)Google Scholar
Wakeling, A. E., Lewis, D. & Annison, E. F. (1970). Proc. Nutr. Soc. 29, 60A.Google Scholar
Williams, A. P. & Smith, R. H. (1974). Br. J. Nutr. 32, 421.CrossRefGoogle Scholar
Wolff, J. E. & Bergman, E. N. (1972). Am. J. Physiol. 223, 455.CrossRefGoogle Scholar