Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T09:53:11.576Z Has data issue: false hasContentIssue false

The metabolism of circulating non-esterified fatty acids by the whole animal, hind-limb muscle and uterus of pregnant ewes

Published online by Cambridge University Press:  09 March 2007

D. W. Pethick*
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
D. B. Lindsay
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
P. J. Barker
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
A. J. Northrop
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
*
*Present address; School of Veterinary Science, Murdoch Universitv,W. Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The over-all and regional metabolism of non-esterified fatty acids (NEFA) was studied using a combination of isotopic and arteriovenous-difference techniques.

2. There was a common linear relationship, whether stearic, palmitic or oleic acids were used as tracer, between the arterial NEFA concentration and the rates of entry and oxidation.

3. Assuming that the tracer used reflected the metabolism of all the NEFA, the total entry rate in fed and fasted pregnant ewes was (mean±SE) 0·44±0·02 and 0·55±0·07 mmol/h per kg body-weight respectively. Oxidation of NEFA contributed (mean±SE) 34±5 and 58±7% to the respiratory carbon dioxide in fed and fasted animals, this accounting for (mean±SE) 46±6 and 59±3% of the respective entry rates.

4. Hind-limb muscle both utilized and produced NEFA. The mean gross fractional extraction (calculated from isotopic uptake) was (mean±SE) 9±1%. Gross utilization of any NEFA and appearance of 14CO2 across the muscle were linearly related to the arterial concentration of tracer fatty acid, irrespective of whether this was oleate or stearate. The amount of 14CO2 appearing was consistent with (mean±SE) 54±8% of the CO2 produced by the hind-limb being derived from NEFA oxidation.

5. Infused NEFA were partly converted to ketone bodies. Uptake and oxidation in the hind-limb of ketones formed in the liver could account for approximately 20% of the 14CO2 apparently produced in muscle from NEFA. Correction for this reduces the proportion of CO2 derived from NEFA to 43%. There was some indication that ketones were also produced from NEFA in the hind-limb.

6. NEFA were not a significant energy source for the gravid uterus.

7. An over-all view of energy sources for the whole animal and for hind-limb muscle in normal and fasted pregnant sheep was presented.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Annison, E. F., Brown, R. E., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Bell, A. W. & Thompson, G. E. (1979). Am. J. Physiol. 237, E309.Google Scholar
Bergman, E. N., Havel, R. J., Wolfe, B. M. & Bohmer, T. (1971). J. clin. Invest. 50, 1831.CrossRefGoogle Scholar
Bergman, E. N., Starr, D. J. & Reulein, S. S. (1968). Am. J. Physiol. 215, 874.CrossRefGoogle Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson, Scientific & Technical.Google Scholar
Dagenais, G. R., Tancredi, R. G. & Zierler, K. L. (1976). J. clin. Invest. 58, 421.CrossRefGoogle Scholar
De Vries, G. H., Mamunes, P., Miller, C. D. & Hayward, D. M. (1976). Analyt. Biochem. 70, 156.CrossRefGoogle Scholar
Dole, V. P. (1956). J. clin. Invest. 35, 150.CrossRefGoogle Scholar
Faichney, G. J., Barker, P. J., Setchell, B. P. & Lindsay, D. B. (1981). Q. Jl. expl. Physiol. 66, 195.CrossRefGoogle Scholar
Friedberg, S. J., Klein, R. F., Trout, D. L., Bogdanoff, M. D. & Estes, E. H. (1960). J. clin. Invest. 39, 1511.CrossRefGoogle Scholar
Havel, R. J., Pernow, B. & Jones, N. L. (1967). J. appl. Physiol. 23, 90.CrossRefGoogle Scholar
Hinks, N. T., Mills, S. C. & Setchell, B. P. (1966). Analyt. Biochem. 17, 551.CrossRefGoogle Scholar
James, E. J., Raye, J. R., Gresham, E. L., Makowski, E. L., Meschia, G. & Battaglia, F. C. (1972). Pediatrics, Springfield 50, 361.CrossRefGoogle Scholar
Leat, W. M. F. (1978). In Patterns of Growth and Development in Cattle, p. 231 [de Boer, H., Boer, J. Martin, editors]. The Hague and London: Martinus Nijhoff for the Commission of European Communities.CrossRefGoogle Scholar
Leat, W. M. F. & Ford, E. J. H. (1966). Biochem. J. 101, 317.CrossRefGoogle Scholar
Lindsay, D. B. (1973). In Production Diseases in Farm Animals, p. 107 [Payne, J. M., Hibitt, K. G., Sansom, B. F., editors]. London: Bailliere Tindall.Google Scholar
Lindsay, D. B. (1975). Proc. Nutr. Soc. 34, 241.CrossRefGoogle Scholar
Lindsay, D. B. & Leat, W. M. F. (1977). J. agric Sci., Camb. 89, 215.CrossRefGoogle Scholar
Lindsay, D. B. & Setchell, B. P. (1976). J. Physiol., Lond. 259, 801.CrossRefGoogle Scholar
Neill, A. R., Grime, D. W., Snoswell, A. M., Northrop, A. J., Lindsay, D. B. & Dawson, R. M. C. (1979). Biochem. J. 180, 559.CrossRefGoogle Scholar
Pethick, D. W. & Lindsay, D. B. (1982a). Proc. Aust. Nutr. Soc. 6, 105.Google Scholar
Pethick, D. W. & Lindsay, D. B. (1982b). Br. J. Nutr. 48, 317.Google Scholar
Pethick, D. W. & Lindsay, D. B. (1982c). Br. J. Nutr. 48, 549.CrossRefGoogle Scholar
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1981). Br. J. Nutr. 46, 97.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). In Statistical Methods, 6th ed., p. 447. Ames, Iowa: Iowa State College Press.Google Scholar
Spitzer, J. J. & Gold, M. (1964). Am. J. Physiol. 206, 159.CrossRefGoogle Scholar
Spitzer, J. J. & Hori, S. (1969). Proc. Soc. exptl Biol. Med. 131, 555.CrossRefGoogle Scholar
Thompson, G. E., Gardner, J. W. & Bell, A. W. (1975). Q. Jl. exptl Physiol. 60, 107.CrossRefGoogle Scholar
Zierler, K. L. (1976). Circulation Res. 38, 459.CrossRefGoogle Scholar