Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T11:26:14.808Z Has data issue: false hasContentIssue false

Lysosomal stability, superoxide dismutase and zinc deficiency in regenerating rat liver

Published online by Cambridge University Press:  09 March 2007

I. E. Dreosti
Affiliation:
CSIRO Division of Human Nutrition, Adelaide, South Australia 500, Australia
I. R. Record
Affiliation:
CSIRO Division of Human Nutrition, Adelaide, South Australia 500, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Lysosomal stability was slightly increased in regenerating livers from rats receiving a zinc-deficient (< 0.5 mg/kg) diet for 10 d before surgery.

2. The activity of superoxide dismutase (EC 1.15.1.1) was significantly reduced in the same tissues.

3. The results do not support the view that increased lysosomal fragility represents a major biochemical consequence of nutritional Zn deficiency in animals.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Brenner, E. B. & Bond, J. (1977). Proc. Soc. exp. Biol. Med. 140, 642.Google Scholar
Chvapil, M. (1973). Life Sci. 13, 1041.CrossRefGoogle Scholar
Chvapil, M., Ryan, J. M. & Zukoski, C. F. (1972). Proc. Soc. exp. Biol. Med. 140, 642.CrossRefGoogle Scholar
Davis, P. N., Norris, L. C. & Kratzer, F. H. (1962). J. Nutr. 78, 445.CrossRefGoogle Scholar
Dreosti, I. E., Grey, P. C. & Wilkins, P. J. (1972). S. Afr. med. J. 46, 1585.Google Scholar
Duncan, J. R. & Dreosti, I. C. (1976). J. comp. Path. 86, 81.CrossRefGoogle Scholar
Forman, H. J. & Fridovich, I. (1973). J. biol. Chem. 41, 2645.CrossRefGoogle Scholar
Fridovich, I. (1975). A. Rev. Biochem. 44, 147.CrossRefGoogle Scholar
Higgins, G. M. & Anderson, R. M. (1931). Archs Path. 12, 186.Google Scholar
Hurley, L. S. & Swenerton, H. (1966). Proc. Soc. exp. Biol. Med. 123, 692.CrossRefGoogle Scholar
Lloyd, J. B. & Beck, F. (1969). In Lysosomes in Biology and Pathology, Vol.1, p. 433 [Dingle, J. T. and Fell, H. B., editors]. Amsterdam: North Holland.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McCord, J. M. & Fridovich, I. (1969). J. biol. Chem. 244, 6049.CrossRefGoogle Scholar
Maggi, V. (1966). Jl R. microsc. Soc. 85, 291.CrossRefGoogle Scholar
Mills, C. F., Quarterman, J., Williams, R. B. & Dalgarno., A. C. (1967). Biochem. J. 102, 712.CrossRefGoogle Scholar
Misra, H. P. & Fridovich, I. (1977). Archs Biochem. Biophys. 181, 308.CrossRefGoogle Scholar
Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. & Bent, D. H. (1975). Statistical Package for Social Sciences, 2nd ed.New York: McGraw-Hill.Google Scholar
Owens, J. W., Gammon, K. L. & Stahl, P. D. (1975). Archs Biochem. Biophys. 166, 258.CrossRefGoogle Scholar
Pontremoli, S., Melloni, E., De Flora, A., Accorsi, A., Balestrero, F., Tsolas, O., Horecker, B. L. & Poole, B. (1976). Biochimie 85, 149.CrossRefGoogle Scholar
Slater, T. F. (1974). In Companion to Biochemistry, Vol. 1, p. 512 [Bull, A. T., Lagnado, J. R., Thomas, J. O. and Tipton, K. F., editors]. London: Longman.Google Scholar
Somers, M. & Underwood, E. J. (1969). Aust. J. biol. Sci. 22, 1277.CrossRefGoogle Scholar
Sudhakaran, P. R. & Kurup, P. A. (1974). J. Nutr. 104, 1466.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed.New York: Academic Press.Google Scholar
Wilkins, P. J., Grey, P. C. & Dreosti, I. E. (1972). Br. J. Nutr. 27, 113.CrossRefGoogle Scholar
Williams, D. M., Lynch, R. E., Lee, G. R. & Cartwright, G. E. (1975). Proc. Soc. exp. Biol. Med. 149, 534.CrossRefGoogle Scholar