Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T02:05:18.417Z Has data issue: false hasContentIssue false

Low-sodium diet in pregnancy: effects on blood pressure and maternal nutritional status

Published online by Cambridge University Press:  09 March 2007

Gerrieke D Van Der Maten
Affiliation:
Department of Obstetrics and Gynaecology, Bosch Medicentrum (Groot Ziekengasthuis), 's-Hertogenbosch, The Netherlands
Joop M. A Van Raaij
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands
Leontien Visman
Affiliation:
Department of Obstetrics and Gynaecology, Bosch Medicentrum (Groot Ziekengasthuis), 's-Hertogenbosch, The Netherlands
Lidwien J. M Van Der Heijden
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands
Herman P Oosterbaan
Affiliation:
Department of Obstetrics and Gynaecology, Bosch Medicentrum (Groot Ziekengasthuis), 's-Hertogenbosch, The Netherlands
Rinze De Boer
Affiliation:
Department of Obstetrics and Gynaecology, Bosch Medicentrum (Groot Ziekengasthuis), 's-Hertogenbosch, The Netherlands
Tom K.A.B Eskes
Affiliation:
Department of Obstetrics and Gynaecology, Catholic University of Nijmegen, St. Radboud Hospital, Nijmegen, The Netherlands
Joseph G.A.J Hautvast
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In ninety-four Dutch nulliparous women the effects of a low-Na diet in pregnancy on blood pressure, energy and nutrient intake, Ca metabolism, Zn and Mg status and body composition were studied longitudinally. The women were randomly divided into an intervention group (n 41), which used a low-Na diet (mean urinary Na excretion 61 mmol/24 h) from week 14 of pregnancy until delivery and a control group (n 53; mean urinary Na excretion 142 mmol/24 h). No effect of the diet on blood pressure was observed. The use of a low-Na diet resulted in significantly reduced intakes of energy, protein, carbohydrates, fat, Ca, Zn, Mg, Fe and cholesterol. However, the women on the low-Na diet appeared to be able to adapt quite well to the reduced intake since Ca, Zn and Mg homeostasis was maintained. In the case of Ca and Mg this was probably due to the observed reduced urinary excretions of these nutrients. Non-significant reductions in weight gain (1·5 kg) and fat-mass gain (0·9 kg) over pregnancy were found in the women on the low-Na diet. No significant effects of the diet on birth weight or placental weight were observed.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Armson, B. A., Samuels, P., Miller, F., Verbalis, J. & Main, E. K. (1992). Evaluation of maternal fluid dynamics during tocolytic therapy with ritodrine hydrochloride and magnesium sulfate. American Journal of Obstetrics and Gynecology 167, 758765.CrossRefGoogle ScholarPubMed
Baer, M. T. & King, J. C. (1984). Tissue zinc levels and zinc excretion during experimental zinc depletion in young men. American Journal of Clinical Nutrition 39, 556570.CrossRefGoogle ScholarPubMed
Breslau, N. A., McGuire, J. L., Zerwekh, J. E. & Pak, C. Y C. (1982). The role of dietary sodium on renal excretion and intestinal absorption of calcium and on vitamin D metabolism. Journal of Clinical Endocrinology and Metabolism 55, 369373.CrossRefGoogle ScholarPubMed
Brown, M. A., Nicholson, E., Ross, M. R., Norton, H. E. & Gallery, E. D. M. (1987). Progressive resetting of sodium-renin-aldosterone relationships in human pregnancy. Clinical and Experimental Hypertension B5, 349374.Google Scholar
Butte, N. F., Wills, C., Smith, E.O. & Garza, C. (1985). Prediction of body density from skinfold measurements in lactating women. British Journal of Nutrition 53, 485489.CrossRefGoogle ScholarPubMed
Caggiula, A. W., Wing, R. R., Nowalk, M. P., Milas, N. C., Lee, S. & Langford, H. (1985). The measurement of sodium and potassium intake. American Journal of Clinical Nutrition 42, 391398.CrossRefGoogle ScholarPubMed
Cameron, M. E. & van Staveren, W. A. (1988). Manual on Methodology for Food Consumption Studies. Oxford: Oxford University Press.Google Scholar
Campbell-Brown, M., Ward, R. J., Haines, A. P., North, W. R. S., Abraham, R., McFadyen, I. R., Turnlund, J. R. & King, J. C. (1985). Zinc and copper in Asian pregnancies - is there evidence for a nutritional deficiency? British Journal of Obstetrics and Gynaecology 92, 875885.CrossRefGoogle ScholarPubMed
Castenmiller, J. J. M., Mensink, R. P., van der Heijden, L., Kouwenhoven, T., Hautvast, J. G. A. J., de Leeuw, P. W. & Schaafsma, G. (1985). The effect of dietary sodium on urinary calcium and potassium excretion in normotensive men with different calcium intakes. American Journal of Clinical Nutrition. 41, 5260.CrossRefGoogle ScholarPubMed
Clark, A. J. & Mossholder, S. (1986). Sodium and potassium intake measurements: dietary methodology problems. American Journal of Clinical Nutrition 43, 470476.CrossRefGoogle ScholarPubMed
Commissie Vermindering Gebruik Keukenzout (1986). Vermindering Gebruik Keukenzout, Eindadvies. Den Haag: Voedingsraad.Google Scholar
Connerty, H. V. & Briggs, A. R. (1966). Determination of serum calcium by means of orthocresolphthalein complexone. American Journal of Clinical Pathology 45, 290296.CrossRefGoogle ScholarPubMed
Davey, D. A. & MacGillivray, I. (1988). The classification and definition of the hypertensive disorders of pregnancy. American Journal of Obstetrics and Gynecology 158, 892898.CrossRefGoogle ScholarPubMed
De Jorge, F. B., Delascio, D., de Ulhoa Cintra, A. B. & Antunes, M. L. (1965). Magnesium concentration in the blood serum of normal pregnant women. Obstetrics and Gynecology 25, 253254.Google ScholarPubMed
Durnin, J.V.G.A., McKillop, F. M., Grant, S. & Fitzgerald, G. (1987). Energy requirements of pregnancy in Scotland. Lancet ii, 897900.CrossRefGoogle Scholar
Durnin, J. V. G. A. & Rahaman, M. M. (1967). The assessment of the amount of fat in the human body from measurements of skinfold thickness. British Journal of Nutrition 21, 681689.CrossRefGoogle ScholarPubMed
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition 32, 7797.CrossRefGoogle ScholarPubMed
Ebel, H. & Günther, T. (1980). Magnesium metabolism: a review. Journal of Clinical Chemistry and Clinical Biochemistry 18, 257270.Google ScholarPubMed
Forsum, E., Sadurskis, A. & Wager, J. (1989). Estimation of body fat in healthy Swedish women during pregnancy and lactation. American Journal of Clinical Nutrition 50, 465473.CrossRefGoogle ScholarPubMed
Gallery, E. D. M., Hunyor, S. N., Ross, M. & Györy, A. Z. (1977). Predicting the development of pregnancy-associated hypertension. The place of standardised blood-pressure measurement. Lancet i, 12731275.CrossRefGoogle Scholar
Gustafsson, J. E. C. (1976). Improved specificity of serum albumin determination and estimation of “acute phase reactants” by use of the bromcresol green reaction. Clinical Chemistry 22, 616622.CrossRefGoogle ScholarPubMed
Guyton, A. C. (1991). Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company.Google Scholar
Hambidge, K. M., Krebs, N. F., Jacobs, M. A., Favier, A., Guyette, L. & Ikle, D. N. (1983). Zinc nutritional status during pregnancy: a longitudinal study. American Journal of Clinical Nutrition 37, 429442.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Krebs, N. F., Sibley, L. & English, J. (1987). Acute effects of iron therapy on zinc status during pregnancy. Obstetrics and Gynecology 70, 593596.Google Scholar
Hills, A. G., Parsons, D. W., Webster, G. D., Rosenthal, O. & Conover, H. (1959). Influence of the renal excretion of sodium chloride upon the renal excretion of magnesium and other ions by human subjects. Journal of Clinical Endocrinology and Metabolism 19, 11921211.CrossRefGoogle ScholarPubMed
Hytten, F. E. (1991). Weight gain in pregnancy. In Clinical Physiology in Obstetrics. Part 2. Nutrition and Metabolism, pp. 173203 [Hytten, F. E & Chamberlain, G., editors]. Oxford: Blackwell Scientific Publications.Google Scholar
Institute of Medicine (1990). Nutrition During Pregnancy. Washington DC: National Academy Press.Google Scholar
Kloosterman, G. J. (1970). On intrauterine growth. International Journal of Gynaecology and Obstetrics 8, 895912.CrossRefGoogle Scholar
Lemann, J., Adams, N.D. & Gray, R.W. (1979). Urinary calcium excretion in human beings. New England Journal of Medicine 301, 535541.Google Scholar
MacGillivray, I., Rose, G. A. & Rowe, B. (1969). Blood pressure survey in pregnancy. Clinical Science 37, 395407.Google ScholarPubMed
Margulies, M., Voto, L. S., Fescina, R., Lastra, L., Lapidus, A. M. & Schwarcz, R. (1987). Arterial blood pressure standards during normal pregnancy and their relation with mother-fetus variables. American Journal of obstetrics and Gynecology 156, 11051109.CrossRefGoogle ScholarPubMed
McEniery, P. J., Hunyor, S. N., Cooper, K. A., Gallery, E. D. M., Gyory, A. Z. & Boyce, E. S. (1985). Blood pressure responses to dietary sodium manipulation during normotensive human pregnancy. Clinical and Experimental Pharmacology and Physiology 12, 325330.CrossRefGoogle ScholarPubMed
Moutquin, J. M., Rainville, C., Giroux, L., Raynauld, P., Amyot, G., Bilodeau, R. & Pelland, N. (1985). A prospective study of blood pressure in pregnancy: prediction of pre-eclampsia. American Journal of Obstetrics and Gynecology 151, 191196.CrossRefGoogle Scholar
Nowson, C. A. & Morgan, T. O. (1988). Change in blood pressure in relation to change in nutrients effected by manipulation of dietary sodium and potassium. Clinical and Experimental Pharmacology and Physiology 15, 225242.CrossRefGoogle ScholarPubMed
Perkin-Elmer Corporation (1971). Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk: Perkin-Elmer Corporation.Google Scholar
Pitkin, R. M. (1985). Calcium metabolism in pregnancy and the perinatal period: a review. American Journal of Obstetrics and Gynecology 151, 99109.CrossRefGoogle ScholarPubMed
Prasad, A. S., Rabbani, P., Abbasii, A., Bowersox, E. & Fox, M. R. Spivey (1978). Experimental zinc deficiency in humans. Annals of Internal Medicine 89, 483490.CrossRefGoogle ScholarPubMed
Roelofsen, J. M. T., Berkel, G. M., Uttendorfsky, O. T. & Slegers, J. F. G. (1988). Urinary excretion rates of calcium and magnesium in normal and complicated pregnancies. European Journal of Obstetrics and Gynaecology and Reproductive Biology 27, 227236.CrossRefGoogle ScholarPubMed
SAS Institute Inc. (1989). SAS/STAT User's Guide, version 6, 4th ed. Cary, NC: SAS Institute Inc.Google Scholar
SAS Institute Inc. (1990). SAS Procedures Guide, version 6, 3rd ed. Cary, NC: SAS Institute Inc.Google Scholar
Schwarz, R. (1964). Das Verhalten des Kreislaufs in der normalen Schwangerschafi (Blood circulation in normal pregnancy). Archiv für Gynükologie 199, 549570.CrossRefGoogle ScholarPubMed
Sheldon, W. L., Aspillaga, M. O., Smith, P. A. & Lind, T. (1985). The effects of oral iron supplementation on zinc and magnesium levels during pregnancy. British Journal of Obstetrics and Gynaecology 92, 892898.CrossRefGoogle ScholarPubMed
Siri, W. E. (1956). The gross composition of the body. In Advances in Biological and Medical Physics, vol. 4, pp. 239280 [Lawrence, J. H. & Tobias, C. A., editors]. New York: Academic Press.Google Scholar
Solomons, N. W. (1979). On the assessment of zinc and copper nutriture in man. American Journal of Clinical Nutrition 32, 856871.CrossRefGoogle ScholarPubMed
Spaaij, C. J. K., van Raaij, J. M. A., van der Heijden, L. J. M., Schouten, F. J. M., Drijvers, J. J. M. M., de Groot, L. C. P. G. M., Boekholt, H. A. & Hautvast, J. G. A. J. (1994). No substantial reduction of the thermic effect of a meal during pregnancy in well-nourished Dutch women. British Journal of Nutrition 71, 335344.CrossRefGoogle ScholarPubMed
Steegers, E. A. P., van Lakwijk, H. P. J. M., Jongsma, H. W., Fast, J. H., de Boo, T., Eskes, T. K. A. B. & Hein, P. R. (1991). (Patho)physiological implications of chronic dietary sodium restriction during pregnancy; a longitudinal prospective randomized study. British Journal of Obstetrics and Gynaecology 98, 980987.CrossRefGoogle ScholarPubMed
Stichting Nevo (1986). Nederlands voedingsstoffenbestand 1986. Den Haag: Voorlichtingsbureau voor de Voeding.Google Scholar
Taggart, N. R., Holliday, R. M., Billewicz, W. Z., Hytten, F. E. & Thomson, A. M. (1967). Changes in skinfolds during pregnancy. British Journal of Nutrition 21, 439451.CrossRefGoogle ScholarPubMed
Taylor, C. M., Bacon, J. R., Aggett, P. J. & Bremner, I. (1991). Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. American Journal of Clinical Nutrition 53, 755763.CrossRefGoogle ScholarPubMed
Thongprasert, K., Tanphaichitre, V., Valyasevi, A., Kittigool, J. & Durnin, J. V. G. A. (1987). Energy requirements of pregnancy in rural Thailand. Lancet ii, 10101012.CrossRefGoogle Scholar
Tietz, N. W. (1976). Fundamentals of Clinical Chemistry. Philadelphia: W. B. Saunders Company.Google Scholar
Tuazon, M. A. G., van Raaij, J. M. A., Hautvast, J. G. A. J. & Barba, C. V. C. (1987). Energy requirements of pregnancy in the Philippines. Lancet ii, 11291130.CrossRefGoogle Scholar
Tuttle, S., Aggett, P. J., Campbell, D. & MacGillivray, I. (1985). Zinc and copper nutrition in human pregnancy: a longitudinal study in normal primigravidae and in primigravidae at risk of delivering a growth retarded baby. American Journal of Clinical Nutrition 41, 10321041.CrossRefGoogle ScholarPubMed
Van den Berg, H. & Bruinse, H. W. (1983). On the role of nutrition in normal human pregnancy. PhD Thesis, University of Utrecht.Google Scholar
Van Raaij, J. M. A., Schonk, C. M., Vermaat-Miedema, S. H., Peek, M. E. M & Hautvast, J. G. A. J. (1989). Body fat mass and basal metabolic rate in Dutch women before, during, and after pregnancy: a reappraisal of energy cost of pregnancy. American Journal of Clinical Nutrition 49, 765772.CrossRefGoogle ScholarPubMed
Verhaeghe, J. & Bouillon, R. (1992). Calciotropic hormones during reproduction. Journal of Steroid Biochemistry and Molecular Biology 41, 469477.CrossRefGoogle ScholarPubMed
Vir, S. C., Love, A. H. G. & Thompson, W. (1981). Zinc concentration in hair and serum of pregnant women in Belfast. American Journal of Clinical Nutrition 34, 28002807.CrossRefGoogle ScholarPubMed
Voedingsraad (1992). Nederlandse Voedingsnormen 1989 (Dutch Nutrition Recommendations and Guidelines, 1989). Den Haag: Voorlichtingsbureau voor de Voeding.Google Scholar
Wester, P. O. (1987). Magnesium. American Journal of Clinical Nutrition 45, 13051312.CrossRefGoogle ScholarPubMed
Weststrate, J. & Duerenberg, P. (1988). Methoden ter bepaling van de lichaams samenstelling van de mens. III. Indirecte methoden (Methods for estimating human body composition. III. Indirect methods). Voeding 49, 206214.Google Scholar