Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T22:32:11.097Z Has data issue: false hasContentIssue false

A longitudinal cross-over study of serum cholesterol and lipoproteins in rabbits fed on semi-purified diets containing either casein or soya-bean protein

Published online by Cambridge University Press:  24 July 2007

Anthony H. M. Terpstra
Affiliation:
Department of Human Nutrition, Agricultural University, De Dreijen 12, 6703 BC Wageningen, The Netherlands
Christopher J. H. Woodward
Affiliation:
Department of Human Nutrition, Agricultural University, De Dreijen 12, 6703 BC Wageningen, The Netherlands
Clive E. West
Affiliation:
Department of Human Nutrition, Agricultural University, De Dreijen 12, 6703 BC Wageningen, The Netherlands
Henk G. Van Boven
Affiliation:
Department of Human Nutrition, Agricultural University, De Dreijen 12, 6703 BC Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Two groups, each of six rabbits, were fed on semi-purified diets containing either 400 g casein or 400 g soya-bean protein/kg for 20 d and then the diets of the two groups were crossed-over.

2. Just before the cross-over, the serum cholesterol concentration (mean ± SE) was 3068 ± 592 and 800 ± 143 mg/l for the groups fed on casein and soya-bean protein respectively.

3. Changes in the serum cholesterol concentration were observed 1 d after crossing-over the diets. By 10 d, the cholesterol levels in the two groups had also crossed-over.

4. The changes in serum cholesterol level after the cross-over were reflected in the very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL).

5. Lipoprotein protein concentrations in the LDL changed in the same way as cholesterol. In the VLDL however, the protein concentration decreased in both groups after the change in diet.

6. The cholesterol:protein values for the LDL and VLDL markedly increased in the rabbits changed from the soya-bean-protein diet to the casein diet, reaching a maximum 2 d after the cross-over. In the animals switched from casein to soya-bean protein, the values progressively declined.

7. The source of dietary protein exerts a rapid effect on the composition of both the VLDL and LDL which is proposed to be attributed to changes in the number and size of lipoprotein particles.

Type
Papers of direct reference to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Anitschkow, N. & Chalatow, S. (1913). Centralbl. allgem. Path. path. Anat. 24, 1.Google Scholar
Brattsand, R. (1976). Atherosclerosis 23, 97.CrossRefGoogle Scholar
Carroll, K. K. & Hamilton, R. M. G. (1975). J. Fd Sci. 40, 18.CrossRefGoogle Scholar
Eisenberg, S. (1979). In Lipoprotein Metabolism, p. 139 [Eisenberg, S., editor]. Basal, New York: S. Karger.Google ScholarPubMed
Hamilton, R. M. G. & Carroll, K. K. (1976). Atherosclerosis 24, 47.CrossRefGoogle Scholar
Hermus, R. J. J. (1975). Experimental Atherosclerosis in Rabbits on Diets with Milk Fat and Different Proteins. Wageningen, The Netherlands: Centre for Agricultural Publishing and Documentation.Google Scholar
Huff, M. W., Hamilton, R. M. G. & Carroll, K. K. (1977). Atherosclerosis 28, 187.CrossRefGoogle Scholar
Ignatowski, A. (1909). Virchows Arch. path. Anat. Physiol. klin. Med. 198, 248.CrossRefGoogle Scholar
Kritchevsky, D. (1979). J. Am. Oil Chem. Soc. 56, 135.CrossRefGoogle Scholar
Kritchevsky, D., Tepper, S. A., Williams, D. E. & Story, J. A. (1977). Atherosclerosis 26, 397.CrossRefGoogle ScholarPubMed
Lacombe, C. & Nibbelink, M. (1980). Artery 6, 280.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Markwell, M. A. K., Haas, S. M., Bieber, L. L. & Tolbert, N. E. (1978). Analyt. Biochem. 87, 206.CrossRefGoogle Scholar
Meeker, D. R. & Kesten, H. D. (1941). Arch. Path. 31, 147.Google Scholar
Narayan, K. A. (1975). In Analysis of Lipids and Lipoproteins, p. 225 [Perkins, E. G., editor]. Champaign, Ill.: American Oil Chemists Society.Google Scholar
Newburgh, L. H. & Squier, T. L. (1920). Archs intern. Med. 26, 38.CrossRefGoogle Scholar
Roberts, D. C. K., Huff, M. W. & Carroll, K. K. (1979). Lipids 14, 566.CrossRefGoogle Scholar
Röschlau, P., Bernt, E. & Gruber, W. (1974). Z. klin. Chem. klin. Biochem. 12, 403.Google Scholar
Ross, A. C., Minick, C. R. & Zilversmit, D. B. (1978). Atherosclerosis 29, 301.CrossRefGoogle ScholarPubMed
Sirtori, C. R., Gatti, E., Montero, O., Conti, F., Agradi, E., Tremoli, E., Sirtori, M., Fraterrigo, L., Tavazzi, L. & Kritchevsky, D. (1979). Am. J. clin. Nutr. 32, 1645.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed. p. 130. Ames Iowa: State University Press.Google Scholar
Terpstra, A. H. M., Harkes, L. & van der Veen, F. H. (1981). Lipids 16, 114.CrossRefGoogle Scholar
Terpstra, A. H. M. & Sanchez-Muniz, F. J. (1981). Atherosclerosis 39, 217.CrossRefGoogle Scholar
Terpstra, A. H. M., Woodward, C. J. H. & Sanchez-Muniz, F. J. (1981). Analyt. Biochem. 111, 149.CrossRefGoogle Scholar