Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T01:06:04.344Z Has data issue: false hasContentIssue false

Lipid metabolism of liquid-associated and solid-adherent bacteria gin rumen contents of dairy cows offered lipid-supplemented diets

Published online by Cambridge University Press:  09 March 2007

D. Bauchart
Affiliation:
Laboratoire d'Etude du Métabolisme EnergétiqueINRA CRZV, Theix, 63122 Saint-Genés CharnpanelleFrance
F. Legay- Carmier
Affiliation:
Laboratoire d'Etude du Métabolisme EnergétiqueINRA CRZV, Theix, 63122 Saint-Genés CharnpanelleFrance
M. Doreau
Affiliation:
Laboratoire de la LactationINRA CRZV, Theix, 63122 Saint-Genés CharnpanelleFrance
B. Gaillard
Affiliation:
Laboratoire de Microbiologie, INRA CRZV, Theix, 63122 Saint-Genés Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The lipid distribution and fatty acid (FA) composition of total lipids, polar lipids and free fatty acids (FFA) were determined in liquid-associated bacteria (LAB) and solid-adherent bacteria (SAB) isolated from the rumen contents of seven dairy cows fitted with rumen fistulas. Two experiments, arranged according to a 4 x 4 and 3 x 3 Latin Square design, were performed using two basal diets consisting of one part hay and one part barley-based concentrate, and five lipid-supplemented diets consisting of the basal diet plus (g/kg dry matter): 53 or 94 rapeseed oil, 98 tallow, 87 soya-bean oil or 94 palmitostearin. For all diets used, total lipids were 1.7–2.2 times higher in SAB than in LAB (P < 005); this probably resulted from a preferential incorporation of dietary FA adsorbed onto food particles. Addition of oil or fat to the diets did not modify the polar lipid content but increased the FFA content of SAB and LAB by 150%. Lipid droplets were observed in the cytoplasm in SAB and LAB using transmission electron microscopy, which suggested that part of the additional FFA was really incorporated into the intracellular FFA rather than associated with the cell envelope by physical adsorption. Linoleic acid was specifically incorporated into the FFA of SAB, which emphasized the specific role of this bacterial compartment in the protection of this acid against rumen biohydrogenation.

Type
Lipid Metebolism
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Bauchart, D. & Aurousseau, B (1981). Postprandial lipids in blood plasma of preruminant calves. Journal of Dairy Science 64 20332042.CrossRefGoogle ScholarPubMed
Bauchart, D., Aurousseau, B., Auclair, E. & Labarre, A. (1985). Addition of sorbitol to a milk substitute for veal calves II. Effects on plasma, liver and muscle lipids. Reproduction, Nutrition, Developpement 25, 411425.CrossRefGoogle Scholar
Bauchart, D., Legay-carmier, F. & Doreau, M. (1989). Relationship between linoleic acid intake and duodenal flows in dairy cows offered lipid-supplemented diets. Reproduction, Nutrition, Developpement (In the Press).Google Scholar
Bauchart, D., Vérité, R. & Rémond, B. (1984). Long-chain fatty acid digestion in lactating cows fed fresh grass from spring to autumn. Canadian Journal of Animal Science 64, 330331.CrossRefGoogle Scholar
Beaman, B. L. & Shankel, D. M. (1969). Ultrastructure of Nocardia cell growth and development on defined and complex agar media. Journal of Bacteriology 99, 876884.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. (1976). Chemical composition of microbial matter in the rumen. Journal of the Science of Food and Agriculture 27, 621632.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. (1986). Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences. In Control of Digestion and Metabolism in Ruminants, pp. 158172 [Milligan, L. P., Grovum, W. L. and Dobson, A. editors ]. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Czerkawski, J. W. & Clapperton, J. L. (1984). Fats as energy-yielding compounds in the ruminant diet. In Fats in Animal Nutrition, 37th Euster School in Agriculture Science, pp. 249263 [Wiseman, J. editor]. London: Butterworths.Google Scholar
Demeyer, D. I., Henderson, C. & Prins, R. A. (1978). Relative significance of exogenous and de novo synthesized fatty acids in the formation of rumen microbial lipids in vitro. Applied and Environmental Microbiology 35, 2431.CrossRefGoogle ScholarPubMed
Emmanuel, B. (1978). The relative contribution of propionate, and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biochimica et Biophysica Aeta 528, 239246.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Simple method for the isolation and purification of total lipides from animal tissues. Journal qf Biologicul Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Harfoot, C. G. (1981). Lipid metabolism in the rumen. In Lipid Metabolism in Ruminant Animals, pp. 2255 lsqb; Christie, W. W. editorrsqb;. Oxford:Pergamon Press.Google Scholar
Harfoot, C. G., Crouchman, M. L., Noble, R. C. & Moore, J. H. (1974). Competition between food particles and rumen bacteria in the uptake of long-chain fatty acids and triglycerides. Journal of Applied Bacteriology 37, 633641.CrossRefGoogle ScholarPubMed
Harfoot, C. G., Noble, R. & Moore, J. H. (1973). Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen. Biochemical Journal 132, 829832.CrossRefGoogle ScholarPubMed
Hauser, H., Hazlewood, G. P. & Dawson, R. M. (1979). Membrane fluidity of a fatty acid auxotroph grown with palmitic acid. Nature 279, 536538.CrossRefGoogle ScholarPubMed
Hawke, J. C. (1971). The incorporation of long-chain fatty acids into lipids by rumen bacteria and the effect of biohydrogenation. Biochimica et Biophysica Acta 248, 167170.CrossRefGoogle ScholarPubMed
Hazlewood, G. P. & Dawson, R. M. C. (1977). Acyl galactosyl glycerols as a source of long-chain fatty acids for naturally occurring rumen auxotroph. Biochemical Society Transactions 5, 17211723.CrossRefGoogle Scholar
Hazlewood, G. P. & Dawson, R. M. C. (1979). Characteristics of a lipolytic and fatty acid requiring Butyrivibrio sp. isolated from the ovine rumen. Journal of General Microbiology 112, 1527.CrossRefGoogle ScholarPubMed
Hazelwood, G. P., Kemp, P., Lander, D. & Dawson, R. M. C. (1976). C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid. British Journal of Nutrition 35, 293297.CrossRefGoogle Scholar
Ifkovits, R. W. & Ragheb, H. S. (1968). Cellular fatty acid composition and identification of rumen bacteria. Applied Microbiology 16, 14061413.CrossRefGoogle ScholarPubMed
INRA (1978). Tableaux de la valeur nutritive des aliments. In Alimentations des Ruminants, pp. 519555 [ Jarrige, R. editor ]. Versailles: INRA Publications.Google Scholar
Katz, I. & Keeney, M. (1966). Characterization of the octadecenoic acids in rumen digesta and rumen bacteria. Journal of Dairy Science 49, 962966.CrossRefGoogle ScholarPubMed
Legay-Carmier, F. & Bauchart, D. (1989). Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil. British Journal of Nutrition 61, 725740.CrossRefGoogle Scholar
Legay-Carmier, F., Bauchart, D. & Doreau, M. (1987). Teneur et composition des lipides des bactéries du rumen libres et adhérant aux particules chez la Vache: influence des régimes riches en matieres grasses non protégées. Reproduction, Nutrition, Developpement 27, 243245.CrossRefGoogle Scholar
Lough, A. K. (1970). Aspects of lipid digestion in the ruminant. In Physiology of Digestion and Metabolism in the Ruminant, pp. 519528 [Phillipson, A. T. editor ]. Newcastle upon Tyne: Oriel Press.Google Scholar
Mann, H. B. & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 5060.CrossRefGoogle Scholar
Merry, R. J. & McAllan, A. B. (1983). A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. British Journal of Nutrition 50, 701709.CrossRefGoogle ScholarPubMed
Miyagawa, E., Azuma, R. & Suto, T. (1979). Cellular fatty acid composition in Gram-negative obligately anaerobic rods. Journal of General and Applied Microbiology 25, 4151.CrossRefGoogle Scholar
Miyagawa, E. & Suto, T. (1980). Cellular fatty acid composition in Bacteroides oralis and Bacteroides ruminicola. Journal of General and Applied Microbiology 26, 331343.CrossRefGoogle Scholar
Moore, J. H. & Christie, W. W. (1984). Digestion, absorption and transport of fats in ruminant animals. In Fats in Animal Nutrition, pp. 123149 [Wiseman, J. editor ]. London: Butterworths.CrossRefGoogle Scholar
Noble, R. C. (1981). Digestion, absorption and transport of lipids in ruminant animals. In Lipid Metabohm in Ruminant Animals, pp. 5793 [Christie, W. W. editor ]. Oxford: Pergamon Press.CrossRefGoogle Scholar
Palmquist, D. (1984). Use of fats in diets for lactating dairy cows. In Fats in Animal Nutrition, 37th Easter School in Agriculture Science, pp. 357381 [ Wiseman, J. editor ]. London: Butterworths.CrossRefGoogle Scholar
Singh, S. & Hawke, J. C. (1979). The in vitro lipolysis and biohydrogenation of monogalactosyldiglyceride by whole rumen contents and its fractions. Journal of the Science of Food and Agriculture 30, 603612.CrossRefGoogle ScholarPubMed
Vermorel, M. (1978). Feed evaluation for ruminants. 11. The new energy systems proposed in France. Livestock Production Science 5, 347365.CrossRefGoogle Scholar
Viviani, R. (1970). Metabolism of long-chain fatty acids in the rumen. Advances in Lipid Research 8, 267346CrossRefGoogle ScholarPubMed
Williams, A. G. & Strachan, N. H. (1984). The distribution of polysaccharide-degrading enzymes in the bovine rumen digesta ecosystem. Current Microbiology 10, 215220.CrossRefGoogle Scholar
Williams, P. P. & Dinusson, W. E. (1973). Ruminal volatile fatty acid concentration and weight gains of calves reared with and without ruminal ciliated protozoa. Journal of Animal Science 36, 588591.CrossRefGoogle ScholarPubMed