Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T11:23:36.076Z Has data issue: false hasContentIssue false

Involvement of small intestinal motility in blood glucose response to dietary fibre in man

Published online by Cambridge University Press:  09 March 2007

Christine Cherbut
Affiliation:
Institut National de la Recherche Agronornique, BP 527, 44026 Nanles Cedex 03, France
S. Bruley Des Varannes
Affiliation:
Equipe Fonctions Digestives et Nutrition, Höpital G et R Laénnec, Nantes, France
M. Schnee
Affiliation:
Equipe Fonctions Digestives et Nutrition, Höpital G et R Laénnec, Nantes, France
Martine Rival
Affiliation:
Institut National de la Recherche Agronornique, BP 527, 44026 Nanles Cedex 03, France
J-P. Galmiche
Affiliation:
Equipe Fonctions Digestives et Nutrition, Höpital G et R Laénnec, Nantes, France
J. Delort-Laval
Affiliation:
Institut National de la Recherche Agronornique, BP 527, 44026 Nanles Cedex 03, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three dietary fibres with different physicochemical properties were studied in healthy humans for their effects on small intestinal motility and postprandial hyperglycaemia. Duodeno-jejunal motor activity was evaluated electromyographically for 180 min in six subjects who had ingested a test meal composed of glucose alone or glucose with 15 g of wheat bran (WB), sugar beet (SB) or ispaghula (I) fibres. Glucose and insulin concentrations were determined during the same period. Each subject received each of the four test meals randomly during a 4 d period. Addition of SB or I to the glucose meal altered duodeno-jejunal motility. Both of these fibres inhibited stationary contractile activity and increased the propagation length and velocity of propagated activity, whereas addition of WB had no effect. These results could reflect the high water-holding capacity of SB and 1. Blood glycaemic response to the glucose meal was reduced by SB and I but remained unchanged with WB. Postprandial blood glucose levels were significantly correlated with the total motility index (r 0·82) and stationary activity (r 0·79). Taken together, these observations suggest that the contractile activity induced by dietary fibre in the small intestine probably plays a major role in delayed glucose absorption.

Type
Small intestinal mobility and the effects of dietary fibre on blood glucose
Copyright
Copyright © The Nutrition Society 1994

References

Adiotomre, J., Eastwood, M. A., Edwards, C. A. & Brydon, W. G. (1990). Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. American Journal of Clinical Nutrition 52, 128134.CrossRefGoogle ScholarPubMed
Association Frangoise de Normalisation (1985). Reprisentation des distributions granulomitriques (Granulo- metric distributions). Norme francaise X-11–635, 19p.Google Scholar
Braaten, J. T., Wood, P. J., Scott, F. W., Riedel, K. D., Poste, L. M. & Collins, M. W. (1991). Oat gum lowers glucose and insulin after an oral glucose load. American Journal of Clinical Nutrition 53, 14251430.CrossRefGoogle ScholarPubMed
Brown, N. J., Worlding, J., Rumsey, R. D. E. & Read, N. W. (1988). The effect of guar gum on the distribution of a radiolabelled meal in the gastrointestinal tract of the rat. British Journal of Nutrition 59, 223231.CrossRefGoogle ScholarPubMed
Bruley des Varannes, S., Cherbut, C., Schnee, M., Delort-Laval, J. & Galmiche, J. P. (1992). Effects of lactulose on fasting small intestine myoelectrical activity in humans. European Journal of Gastroenterology and Hepatology 4, 539545.Google Scholar
Bueno, L., Praddaude, F., Fioramonti, J. & Ruckebusch, Y. (1981). Effect of dietary fiber on gastrointestinal motility and jejunal transit time in dogs. Gastroenterology 80, 701707.CrossRefGoogle ScholarPubMed
Cherbut, C., Albina, E., Champ, M., Doublier, J. L. & Lecannu, G. (1990). Action of guar gums on the viscosity of digestive contents and on the gastrointestinal motor function in pigs. Digestion 46, 205213.CrossRefGoogle ScholarPubMed
Cherbut, C., Salvador, V., Barry, J. L. & Delort-Laval, J. (1991). Dietary fibre effects on intestinal transit in man: involvement of their physicochemical and fermentative properties. Food Hydrocolloids 5, 1522.CrossRefGoogle Scholar
Cummings, J. H. (1978). Diet and transit through the gut. Journal of Plant Foods 3, 8395.CrossRefGoogle Scholar
Eastwood, M. A. & Morris, E. R. (1992). Physical properties of dietary fiber that influence physiological function: a model for polymers along the gastrointestinal tract. American Journal of Clinical Nutrition 55, 436442.CrossRefGoogle Scholar
Eastwood, M. A., Robertson, J. A., Brydon, W. G. & McDonald, D. (1983). Measurement of water-holding properties of fibre and their faecal bulking ability in man. British Journal of Nutrition 50, 539547.CrossRefGoogle ScholarPubMed
Edwards, C. A. & Read, N. W. (1990). Fibre and small intestinal function. In Dietary Fibre Perspectives, Vol. 11, pp. 5275 [Leeds, A. R., editor]. London: John Libbey.Google Scholar
Edwards, C. A., Johnson, I. T. & Read, N. W. (1988). Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? European Journal of Clinical Nutrition 42, 307312.Google ScholarPubMed
Fioramonti, J., Bueno, L. & Frexinos, J. (1980). Sonde endoluminale pour I'exploration électromyographique de la motricité colique chez l'homme (An endoluminal probe for electromyographic exploration of colonic motility in man). Gastroenterologie Clinique et Biologique 4, 546550.Google Scholar
Grundy, D. & Scratcherd, T. (1989). Sensory afferents from the gastrointestinal tract. In Handbook of Physiology “The Gastrointestinal System”, Vol. 6, part 1, pp. 593620 [Wood, J. D., volume editor]. Bethesda: American Physiological Society.Google Scholar
Hamberg, H., Rumessen, J. J. & Gudmand-Hoyer, E. (1989). Blood glucose response to pea fiber: comparison with sugar beet and wheat bran. American Journal of Clinical Nutrition 50, 324328.CrossRefGoogle ScholarPubMed
Hanson, C. F. & Winterfeldt, E. A. (1985). Dietary fiber effects on passage rate and breath hydrogen. American Journal of Clinical Nutrition 42, 4448.CrossRefGoogle ScholarPubMed
Hölzer, H. H. & Raybould, H. E. (1992). Vagal and splanchnic sensory pathways mediate inhibition of gastric motility induced by duodenal distension. American Journal of Physiology 262, G60W608.Google ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., Goff, D. V., Metz, G. L. & Alberti, K. G. M. M. (1978). Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. British Medical Journal 1, 13921394.CrossRefGoogle ScholarPubMed
Kolrep-Dechauffour, S., Cherbut, C., Bruley des Varannes, S., Guiheneuc, P. & Galmiche, J. P. (1989). Les éectrodes annulaires endoluminales sont-elles fiables pour le recueil de l'activité myoélectrique de l'intestin gréle (Are annular endoluminal electrodes reliable for recording myoelectrical activity in the small intestine)? Gastroenterologie Clinique et Biologique 13, 602606.Google Scholar
Latour, A. & Ferre, J. P. (1985). Computer-aided analysis of gastrointestinal myoelectric activity. Journal of Biomedical Engineering 71, 127131.CrossRefGoogle Scholar
Lucas, M-F., Cherbut, C. & Bruley des Varannes, S. (1991). Automatic recognition of intestinal myoelectrical activity. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 13, 483484.Google Scholar
Macagno, E. O., Christensen, J. & Lee, C. L. (1982). Modeling the effect of wall movement on absorption in the intestine. American Journal of Physiology 243, G541–G550.Google ScholarPubMed
Malagelada, J. R. & Azpiroz, F. (1989). Determinants of gastric emptying and transit in the small intestine. In Handbook of Physiology “The Gastrointestinal System”,Vol. 6, part 2, pp. 909938 [Wood, J. D., volume editor]. Bethesda: American Physiological Society.Google Scholar
Morgan, L. M., Tredger, J. A., Wright, J. & Marks, V. (1990). The effect of soluble- and insoluble-fibre supplementation on post-prandial glucose tolerance, insulin and gastric inhibitory polypeptide secretion in healthy subjects. British Journal of Nutrition 64, 103110.CrossRefGoogle ScholarPubMed
Prosky, L., Asp, N. G., Schweizer, T. F., De Vries, J. W. & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: Interlaboratory study. Journal of the Association ofoficial Analytical Chemists 71, 10171023.Google ScholarPubMed
Read, N. W. (1986). Dietary fiber and bowel transit. In (Dietary Fiber: Basic and Clinical Aspects, pp. 81100 [G.Vahouny and D. Kritchevsky, editors). New York: Plenum Press.CrossRefGoogle Scholar
Russell, J. & Bass, P. (1986). Effects of laxative and nonlaxative hydrophilic polymers on canine small intestinal motor activity. Digestive Diseases and Sciences 31, 281288.CrossRefGoogle ScholarPubMed
Sarr, M.G., Kelly, K. A. & Phillips, S. F. (1980). Canine jejunal absorption and transit during interdigestive and digestive motor states. American Journal of Physiology 239, G167–G172.Google ScholarPubMed
Schwartz, S. E. & Levine, G. D. (1980). Effects of dietary fiber on intestinal glucose absorption and glucose tolerance in rats. Gastroenterology 79, 833836.CrossRefGoogle ScholarPubMed
Siegle, M. L..& Ehrlein, H. J. (1988). Digestive motor patterns and transit of luminal contents in canine ileum. American Journal of Physiology 254, G552–G559.Google ScholarPubMed
Staumont, G., Delvaux, M., Fioramonti, J., Berry, P., Bueno, L. & Frexinos, J. (1992). Differences between jejunal myoelectric activity after a meal and during phase 2 of migrating motor complexes in healthy humans. Digestive Diseases and Sciences 37, 15541561.CrossRefGoogle ScholarPubMed
Sud, S., Siddhu, A. & Bijlani, R. L. (1988). Effect of ispaghula husk on postprandial glycemia and insulinemia following glucose and starch drinks. Nutrition 4, 13.Google Scholar
Torsdottir, I., Alpsten, M., Anderson, H. & Einarsson, S. (1989). Dietary guar gum effects on postprandial blood glucose, insulin and hydroxyproline in humans. Journal of Nurritzon 119, 19251931.Google ScholarPubMed