Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T05:20:42.509Z Has data issue: false hasContentIssue false

Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats

Published online by Cambridge University Press:  09 March 2007

N. Kok
Affiliation:
Unité de Biochimie Toxicologique et Cancérologique, Département des Sciences Pharmaceutiques, Université Catholigue de Louvain, BCTC 7369, Avenue Mounier 73, B-1200, Brussels, Belgium
M. Roberfroid
Affiliation:
Unité de Biochimie Toxicologique et Cancérologique, Département des Sciences Pharmaceutiques, Université Catholigue de Louvain, BCTC 7369, Avenue Mounier 73, B-1200, Brussels, Belgium
A. Robert
Affiliation:
Quantitative Methods in Health Sciences Section, Université Catholique de Louvain, Avenue Hippocrate 55, Box 5550, B-I200, Brussels, Belgium
N. Delzenne
Affiliation:
Unité de Biochimie Toxicologique et Cancérologique, Département des Sciences Pharmaceutiques, Université Catholigue de Louvain, BCTC 7369, Avenue Mounier 73, B-1200, Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dietary supplementation with oligofructose (OFS; 100 g/kg), a non-digestibleoligomer of β-D-fructose, decreases serum triacylglycerols in serum and VLDL of rats. In order to investigate the role of hepatic metabolism in the hypolipidaemic effect of OFS, male Wistar rats were fed on a standard diet with or without 1OOg Raftilose® P95/kg as OFS source for 30 d. OFS feeding (1) significantly decreased triacylglycerol and phospholipid concentrations in both blood and liver, (2) increased the glycerol-3-phosphate liver content but decreased the hepatic activity of glycerol-3-phosphate acyltransferase (EC 2.3.1.15), suggesting a decrease in acylglycerol synthesis, (3) did not affect the blood non-caterified fatty acid concentrations, but (4) reduced by 54% the capacity of isolated hepatocytesto synthesize and secrete triacylglycerols from labelled acetate; the activity of fatty acid synthase, a key lipogenic enzyme was also significantly decreased. These findings suggest that OFS decreases serum triacylglycerols by reducing de nova fatty acid synthesis in the liver; the lower insulin level in the serum of OFS-fed rats could explain, at least partly, the metabolic effect induced by such nondigestible carbohydrates.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Arbeeny, C.M., Meyers, D.S., Bergquist, K.E. & Gregg, R.E. (1992). Inhibition of fatty acid synthesis decreases very-low-density lipoprotein secretion in the hamster. Journal of Lipid Research 33, 843851.CrossRefGoogle ScholarPubMed
Bates, E.J. & Saggerson, D. (1977). A selective decrease inmitochondrial glycerol phosphate acyltransferase activity in livers from streptozotocin-diabetic rats. FEBS Letters 64, 3639.Google Scholar
Beynen, A., Vaartjes, W. & Geelen, M. (1979). Opposite effects of insulin and glucagon in acute hormonal control of hepatic lipogenesis. Diabetes 28, 828835.CrossRefGoogle ScholarPubMed
Beynen, A., Vaartjes, W. & Geelen, M. (1980). Acuteeffects of insulin on fatty acid metabolism in isolated hepatocytes. Hormone and Metabolic Research 12, 425430,CrossRefGoogle Scholar
Björnsson, O.J., Duerden, J.M., Bartlett, S.M., Sparks, J.D., Sparks, C.E. & Gibbons, G.F. (1992). The role of pancreatic hormones in the regulation of lipid storage, oxidation and secretion in primary culturesof rat hepatocytes. Biochemical Journal 281, 381386CrossRefGoogle Scholar
Boll, M., Weber, L.W., Stampfl, A. & Messner, B. (1994). Lipogenic enzymes of rat liver and adipose tissue. Dietary variations and effectof polychlorinated biphenyls. Zeitschrift fur Naturforschung 49C, 665678.CrossRefGoogle Scholar
Braun, J. & Severson, D.L. (1992). Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochemical Journal 287, 337347.CrossRefGoogle ScholarPubMed
Cheng, C. & Saggerson, E. (1978). Rapid antagonistic actions of noradrenaline and insulin on rat adipocyte phosphatidate phosphohydrolase activity. FEBS Letters 93, 120124.CrossRefGoogle ScholarPubMed
Clarke, S.D. & Jump, D.B. (1994). Dietary polyunsaturated fatty acid regulation of gene transcription. Annual Review of Nutrition 14, 8398.CrossRefGoogle ScholarPubMed
Deboyser, D., Goethals, F., Krack, G. & Roberfroid, M. (1989). Investigation into the mechanism of tetracycline- induced steatosis: study in isolated hepatocytes. Toxicological and Applied Pharmacology 97, 473479.CrossRefGoogle ScholarPubMed
Declercq, P., Debeer, L. & Mannaerts, G. (1982). Role of glycerol-3-phosphate and glycerophosphate acyltransferase in the nutritional control of hepatic triacylglycerol synthesis. Biochemical Journal 204, 247256.CrossRefGoogle ScholarPubMed
de Deckere, E.A., Kloots, W. & van Amelsvoort, J.M. (1995). Both raw and retrograded starch decrease serum triacylglycerol concentration and fat accretion in the rat. British Journal of Nutrition 73, 281298.CrossRefGoogle ScholarPubMed
Delzenne, N., Kok, N., Fiordaliso, M., Deboyser, D., Goethals, F. & Roberfroid, M. (1993). Dietary fructooligosaccharides modify lipid metabolism in rats. American Journal of Clinical Nutrition 57, 820S.CrossRefGoogle Scholar
Delzenne, N., & Roberfroid, M. (1994). Physiological effects of non digestible oligosaccharides. Food and Science Technology 27, 16.Google Scholar
Duerden, J.M., Bartlett, S.M. & Gibbons, G.F. (1989). Long-term maintenance of high rates of very-low-density-lipoprotein secretion in hepatocyte cultures. Biochemical Journal 263, 937943.CrossRefGoogle ScholarPubMed
Fiordaliso, M., Kok, N., Desager, J.P., Goethals, F., Deboyser, D., Roberfroid, M. & Delzenne, N. (1995). Oligofructose-supplemented diet lowers serum and VLDL concentrations of triglycerides, phospholipids and cholesterol in rats. Lipids 30, 163167.CrossRefGoogle Scholar
Fleiss, J.L. (1986). The Design and Analysis of Clinical Experiments. New York: John Wiley.Google Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Gibbons, G.F. (1990). Assembly and secretion of hepatic very-low-density lipoprotein. Biochemical Journal 268, 113.CrossRefGoogle ScholarPubMed
Gibson, D.M., Lyons, R., Scott, D. & Muto, Y. (1972). Synthesis and degradation of the lipogenic enzymes of rat liver. Advance in Enzyme Regulation 10, 187.CrossRefGoogle ScholarPubMed
Giffhorn-Katz, S. & Katz, N.R. (1986). Carbohydrate-dependent induction of fatty acid synthase in primary cultures of rat hepatocytes. European Journal of Biochemistry 159, 513518.CrossRefGoogle ScholarPubMed
Glore, S., Van Treeck, D., Knehans, A. & Guild, M. (1994). Soluble fiber and serum lipids: a literature review. Journal of the American Dietary Association 94, 425436.CrossRefGoogle ScholarPubMed
Hohorst, H.J. (1965). L-(-)-glycerol-I-phosphate determination with glycerol-I-phosphate dehydrogenase. In Methods of Enzymatic Analysis, pp. 215219 [Bergmeyer, H.U., editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Jerkins, A.A., Liu, W.R., Lee, S. & Sul, H.S. (1995). Characterization of the murine mitochondrial glycerol-3-phosphate acyltransferase promoter. Journal of Biological Chemistry 270, 14161421.CrossRefGoogle ScholarPubMed
Kaiser, F.E., Schwartz, H.L., Mariash, C.N. & Oppenheimer, J.H. (1983). Comparispn of age-related decreases in the basal and carbohydrate inducible levels of lipogenic enzymes in adipose tissue and liver. Metabolism 32, 838845.CrossRefGoogle ScholarPubMed
Katsurada, A., Iritani, N., Fukuda, H., Matsumura, Y., Nishimoto, N., Nogushi, T. & Tanaka, T. (1990). Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. European Journal of Biochemistry 190, 427433.CrossRefGoogle ScholarPubMed
Kok, N., Fiordaliso, M., Dehnne, N., Deboyser, D., Goethals, F. & Roberfroid, M. (1993). Role of liver metabolism in oligofructose-induced hypotriglyceridemia in rats. Archives Internationales de Physiologie, de Biochimie et de Biophysique 101, B15.Google Scholar
Krack, G., Gravier, O., Roberfroid, M. & Mercier, M. (1980). Subcellular fractionation of isolated rat hepatocytes. A comparison with livm homogenate. Biochimica et Biophysica Acta 632, 619629.CrossRefGoogle Scholar
Leclère, C., Champ, M., Boillot, J., Guille, G., Lecannu, G., Molis, C., Bornet, F., Krempf, M., Delort-Laval, J. & Galmiche, J.P. (1994). Role of viscose guar gum in lowering the glycemic response after a solid meal. American Journal of Clinical Nutrition 59, 914915.CrossRefGoogle Scholar
Lewis, G., Uffelman, K., Szeto, L., Weller, B. & Steiner, G. (1995). Interaction between free fatty acids and insulin in the acute control of VLDL production in humans. Journal of Clinical Investigation 95, 158166.CrossRefGoogle ScholarPubMed
Lin, Y., Vonk, R.J., Slooff, M.J., Kuipers, F. & Smit, M.J. (1995). Differences in propionate-induced inhibition of cholesterol and triacylglycerol synthesis between human and rat hepatocytes in primary culture. British Journal of Nutrition 74, 197207.CrossRefGoogle ScholarPubMed
Linn, T. (1981). Purification and crystallization of rat liver fatty acid synthetase. Archives of Biochemistry and Biophysics 209, 613619,CrossRefGoogle ScholarPubMed
Lowry, O., Rosebrough, N., Farr, A. & Randall, A. (1951). Protein measurement with the folin phenol regent. Journal of Biological Chemistry 193, 265273.CrossRefGoogle Scholar
McGarry, J. & Foster, D. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. Annual Review of Biochemistry 49, 395420.CrossRefGoogle ScholarPubMed
Maury, J., Issad, T., Perdereau, D., Gouhot, B., Ferre, P. & Girard, J. (1993). Effect of acarbose on glucose homeostasis, lipogenesis and lipogenic enzyme gene expression in adipose tissue of weaned rats. Diabetologia 36, 503509.CrossRefGoogle ScholarPubMed
Nishina, P. & Freeland, R. (1990). Effects of propionate on lipid biosynthesis in isolated rat hepatocytes. Journal of Nutrition 120, 668673.CrossRefGoogle ScholarPubMed
Overton, P., Furlonger, N., Beety, J.., Chakraborty, J., Tredger, J. & Morgan, L. (1994). The effects of dietary sugar-beet fibre and guar gum on lipid metabolism in Wistar rats. British Journal of Nutrition 72, 385395.CrossRefGoogle ScholarPubMed
Park, O.-J., Cesar, D., Faix, D., Wu, K., Shackleton, C.H. & Hellerstein, M. (1992). Mechanisms of fructose-induced hypertriglyceridemia in the rat. Biochemical Journal 282, 753757.CrossRefGoogle ScholarPubMed
Ribiero, A., Mangenay, M., Cardot, P., Loriette, C., Chambaz, C., Rayssiguier, Y. & Béréziat, G. (1991). Nutritional regulation of apolipoprotein genes: effect of dietary carbohydrates and fatty acids. Advances in Experimental Medicine and Biology 285, 407416.Google Scholar
Schäfer, J., Turnbull, D. & Reichmann, H. (1993). A rapid fluorometric method for the determination of carnitine palmitoyltransferase. Analytical Biochemistry 209, 5356.CrossRefGoogle ScholarPubMed
Sparks, J.D. & Sparks, C.E. (1994). Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochimica et Biophysica Acta 1215, 932.CrossRefGoogle ScholarPubMed
Spence, J. & Pitot, H. (1982). Induction of lipogenic enzymes in primary cultures of rat hepatocytes. Relationship between lipogenesis and carbohydrate metabolism. European Journal of Biochemistry 128, 1520.CrossRefGoogle ScholarPubMed
Stals, H.K., Top, W. & Declercq, P. (1994). Regulation of triacylglycerol synthesis in permeabilized rat hepatocytes. Role of fatty acid concentration and diacylglycerol acyltransferase. FEBS Letters 343, 99102.CrossRefGoogle ScholarPubMed
Stanley, J.C. & Newsholme, E.A. (1985). The effect of dietary guar gum on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver. British Journal of Nutrition 53, 215222.CrossRefGoogle ScholarPubMed
Statistical Solutions Inc. (1995). BMDP New System Professional Edition. Berkeley, CA: University of California Press.Google Scholar
Sturton, R.G., Pritchard, P.H., Han, L.Y. & Brindley, D.N. (1978). The involvement of phosphatidate phosphorylase and phospholipase A activities in the control of hepatic glycerolipid synthesis. Effects of acute feeding with glucose, fructose, sorbitol, glycerol and ethanol. Biochemical Journal 174, 667–470.CrossRefGoogle Scholar
Takase, S., Goda, T. & Watanabe, M. (1994). Monostearoylglycerol-starch complex: its digestibility and effects on glycemic and lipogenic responses. Journal of Nutrition Science and Vitaminology 40, 2336.CrossRefGoogle ScholarPubMed
Tokunaga, T., Oku, T. & Hosoya, N. (1986). Influence of chronic intake of a new sweetener fructooligosaccharide (Neosugar) on growth and gastrointestinal function of the rat. Journal of Nutrition Science and Vitaminology 32, 111121.CrossRefGoogle ScholarPubMed
Topping, D.L. & Mayes, P.A. (1972). The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochemical Journal 126, 295311.CrossRefGoogle Scholar
Ulrich, I.H. (1987). Evaluation of a high-fiber diet in hyperlipidemia: a review. Journal of the American College of Nutrition 6, 1925.CrossRefGoogle Scholar
Vigne, I.L., Lairon, D., Borel, P., Portugal, H., Pauli, A.M., Hauton, J.C. & Lafont, H. (1987). Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. British Journal of Nutrition 58, 405413.CrossRefGoogle ScholarPubMed
Wang, X. & Gibson, G. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.CrossRefGoogle ScholarPubMed
Wright, R.S., Anderson, J.W. & Briges, S.R. (1990). Propionate inhibits hepatocyte lipids synthesis. Proceedings of the Society for Experimental Biology and Medicine 195, 2629.CrossRefGoogle Scholar