Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T03:21:00.414Z Has data issue: false hasContentIssue false

Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides

Published online by Cambridge University Press:  09 March 2007

G. M. Wyatt
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
N. Horn
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
J. M. Gee
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
I. T. Johnson
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Colney Lane, Norwich NR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A comparison was made of the effect of a fibre-free diet and diets containing non-digestible polysaccharides on rat caecal and colonic physiology and microflora.

2. All polysaccharide-containing diets led to enlargement of the caecum and colon, associated with increased weight of contents, and of tissue. Carboxymethylcellulose (CMC) had the most marked effect and animals given this also had watery faeces.

3. The density of bacteria in the caecum and colon varied significantly with diet and the proportion of aerobic bacteria in the flora was increased by the CMC diet.

4. In vitro, CMC and hydroxypropylmethylcellulose were poorly fermented.

5. There was a high correlation (caecum r 0.93; colon r 0.94) between tissue weight and wet weight of organ contents but no correlation with bacterial density, number of bacteria per organ, moisture content or short-chain fatty acid content.

6. It is concluded that caecal and colonic enlargement is due to tissue hypertrophy in response to increased bulk of contents, irrespective of the nature of that bulk which varies with diet; it is unlikely that short-chain fatty acids or other microbial metabolites are the stimulus for the trophic response seen when non-digestible dietary polysaccharides are fed to rats.

Type
Clinical and Human Nutrition papers: Studies Relevant to Human Nutrition
Copyright
Copyright © The Nutrition Society 1988

References

Anderson, D. M. W., Eastwood, M. A. & Brydon, W. G. (1986) Food Hydrocolloids 1, 3744.CrossRefGoogle Scholar
Barnes, E. M. & Impey, C. S. (1974) Journal of Applied Bacteriology 37, 393409.CrossRefGoogle Scholar
Bayliss, C. E. & Houston, A. P. (1985) Food Microbiology 2, 5362.CrossRefGoogle Scholar
Bruns, P., Hood, L. F. & Seeley, H. W. (1977) Nutrition Reports International 15, 131138.Google Scholar
Bryant, M. P. & Burkey, L. A. (1953) Journal of Dairy Science 36, 205217.CrossRefGoogle Scholar
Conning, D. M., Mallet, A. K. & Nicklin, S. (1983) In Gums and Stabilisers in the Food Industry Vol. 2: Applications of Hydrocolloids, pp. 394395 [Phillips, G.D., Wedlock, D. J. and Williams, P. A., editors] Oxford: Pergamon Press.Google Scholar
Cowan, S. T. (1974). Cowan & Steel's Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.Google Scholar
Dowling, R. H., Riecken, E. O., Laws, J. W. & Booth, C. C. (1967) Clinical Science 32, 19.Google Scholar
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. (1956) Analytical Chemistry 28, 350356.CrossRefGoogle Scholar
Dygert, S., Li, L. H., Florida, D. & Thomas, J. A. (1965) Analytical Biochemistry 13, 367374.CrossRefGoogle Scholar
El-Harith, E. A., Dickerson, J. W. T. & Walker, R. (1976) Food and Cosmetic Toxicology 14, 115121.CrossRefGoogle Scholar
El-Harith, E. A., Walker, R., Birch, G. G. & Sukan, G. (1977) Food Chemistry 2, 279289.CrossRefGoogle Scholar
Elsenhans, B., Blume, R. & Caspary, W. F. (1981) American Journal of Clinical Nutrition 34, 18371848.CrossRefGoogle Scholar
Faulks, R. M. & Timms, S. B. (1985) Food Chemistry 17, 273287.CrossRefGoogle Scholar
Gohl, B. & Gohl, I. (1977) Journal of the Science of Food and Agriculture 28, 911915.Google Scholar
Gorbach, S. L. (1971) Gastroenterology 60, 11101129.CrossRefGoogle Scholar
Gross, R. J. (1983) Journal of Infection 7, 177192.CrossRefGoogle Scholar
Horn, N., Wyatt, G. M., Bayliss, C. E., Gee, J. M. & Johnson, I. T. (1986) Food Microbiology 3, 295302.CrossRefGoogle Scholar
Hungate, R. E. (1969). In Methods in Microbiology, Vol. 3B, pp. 117132 [Norris, J.R. and Ribbons, D. W., editors]. London: Academic Press.Google Scholar
Jacobs, L. R. & Lupton, J. R. (1984) American Journal of Physiology 246, G378G385.Google Scholar
Johnson, I. T. & Gee, J. M. (1986) British Journal of Nutrition 55, 497505.CrossRefGoogle Scholar
Johnson, I. T., Gee, J. M. & Mahoney, R. R. (1984) British Journal of Nutrition 52, 477487.CrossRefGoogle Scholar
Konishi, F., Shidoji, Y., Oku, T. & Hosuya, N. (1984) Japanese Journal of Experimental Medicine 54, 139142.Google Scholar
Leegwater, D. C., De Groot, A. P. & van Kalmthout-Kuyper, M. (1974) Food and Cosmetic Toxicology 12, 687697.CrossRefGoogle Scholar
Lupton, J. R., Coder, D. M. & Jacobs, L. R. (1985) American Journal of Physiology 249, G382G388.Google Scholar
McBurney, M. I., Horvath, P. J., Jeraci, J. L. & van Soest, P. J. (1985) British Journal of Nutrition 53, 1724.CrossRefGoogle Scholar
Mallet, A. K., Wise, A. & Rowland, I. R. (1983) Archives of Toxicology 52, 311317.CrossRefGoogle Scholar
Rowland, I. R. & Walker, R. (1983). In Toxic Hazards in Food, pp. 246248 [Conning, D.M. and Lansdown, A. B. G., editors]. London: Croom Helm.Google Scholar
Sakata, T. (1986) Journal of Nutrition Science and Vitaminology 32, 355362.CrossRefGoogle Scholar
Sakata, T. (1987) British Journal of Nutrition 58, 95103.CrossRefGoogle Scholar
Scotland, S. M., Gross, R. J. & Rowe, B. (1985). In The Virulence of Escherichia coli, pp. 395405 [Sussman, M., editor], London: Academic Press.Google Scholar
Southon, S., Gee, J. M. & Johnson, I. T. (1987) British Journal of Nutrition 58, 6572.CrossRefGoogle Scholar
Wang, C. (1979). Effect of chemically-modified starch and unmodified tapioca starch on the caecum and colon of the rat. PhD Thesis, Cornell University.Google Scholar