Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T11:36:44.846Z Has data issue: false hasContentIssue false

Intestinal and hepatic nitrogen balance in the rat after the administration of an oral protein load

Published online by Cambridge University Press:  09 March 2007

José Antonio Fernández-López
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Javier Casado
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Montserrat Esteve
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Immaculada Rafecas
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Josep Maria Argilés
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Xavier Remesar
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Maria Alemany
Affiliation:
Departament de Bioquimica i Fisiologia, Universitat de Barcelona, 08028 Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fate of a small oral dose of protein given to overnight-starved rats was studied. After 3 h, 62 % of the protein amino acids had been absorbed. Most of the absorbed N went into the bloodstream through the portal in the form of amino acids, but urea and ammonia were also present. About one-quarter of all absorbed N was carried as lymph amino acids. The liver was able to take all portal free ammonia and a large proportion of portal amino acids, releasing urea. The hepatic N balance was negative, indicating active proteolysis and net loss of liver protein.

Type
Nitrogen Metabolism
Copyright
Copyright © The Nutrition Society 1993

References

Ahokas, R. A., Reynolds, S. L., Anderson, G. D. & Lipshitz, J. (1984). Maternal organ distribution of cardiac output in the diet-restricted pregnant rat. Journal of Nutrition 114, 22622268.CrossRefGoogle ScholarPubMed
Aikawa, T., Matsutaka, H., Yamamoto, M., Okuda, T., Ishikawa, E., Kawano, T. & Matsumura, E. (1973). Gluconeogenesis and amino acid metabolism. II. Inter-organa1 relations and roles of glutamine and alanine in the amino acid metabolism of fasted rats. Journal of Biochemistry (Tokyo) 74, 10031017.Google ScholarPubMed
Arola, L., Palou, A., Remesar, X., Herrera, E. & Alemany, M. (1981). Effect of ether, sodium pentobarbital and chloral hydrate anesthesia on rat plasma metabolite concentrations. Revista Espanola de Fisiologia 37,379386.Google ScholarPubMed
Casado, J., Pastor-Anglada, M. & Remesar, X. (1987). Hepatic uptake of amino acids at mid-lactation in the rat. Biochemical Journal 245, 297300.CrossRefGoogle ScholarPubMed
Cooper, A. J. L., Nieves, E., Coleman, A. E., File-DeRicco, S. & Gelbard, A. S. (1987). Short-term metabolic fate of [13N]-ammonia in rat liver in vivo. Journal of Biological Chemistry 262, 10731080.CrossRefGoogle ScholarPubMed
DaFonseca-Wollheim, V. F. (1973 a). Bedeutung von Wasserstoffionenkonzentration und ADP-zusatz bei der Ammoniakbestimmung mit Glutamatdehydrogenase (The significance of the hydrogen ion concentration and the addition of ADP in the determination of ammonia with glutamate dehydrogenase). Zeitschrift für Klinische Chemie und Klinische Biochemie 11, 421425.Google Scholar
DaFonseca-Wollheim, V. F. (1973 b). Direkte Plasmaammoniakbestimmung ohne Enteiweissung (Direct determination of plasma ammonia without deproteinization). Zeitschrift für Klinische Chemie und Klinische Biochemie 11, 425427.Google Scholar
Darcy, B. (1984). Availability of amino acids in monogastric animals. Diabete et Metabolisme 10, 121133.Google ScholarPubMed
Demigné, C. & Remesy, A. C. (1977). Étude in vivo chez le rat nourri du metabolisme intestinal et hepatique des acides aminés (Study in vivo of hepatic amino acid metabolism in fed rats). Annales de Biologie, Biochimie et Biophysique 17, 615620.CrossRefGoogle Scholar
Dent, C. E. & Schilling, J. A. (1949). Studies on the absorption of proteins: the amino-acid pattern in the portal blood. Biochemical Journal 44, 318335.CrossRefGoogle ScholarPubMed
Exton, J. M. (1972). Gluconeogenesis. Metabolism 21, 945990.CrossRefGoogle ScholarPubMed
Fafournoux, P., Remesy, C. & Demigne, C. (1990). Fluxes and membrane transport of amino acids in rat liver under different protein diets. American Journal physiology 259, E614–E625.Google ScholarPubMed
Fawcett, J. K. & Scott, J. E. (1960). A rapid method for the determination of urea. Journal of Clinical Pathology 13, 156163.CrossRefGoogle ScholarPubMed
Felig, P., Pozefsky, T., Marliss, E. & Cahill, G. F. (1970). Alanine: key role in gluconeogenesis. Science 167, 10031004.CrossRefGoogle ScholarPubMed
Felig, P. (1973). The glucose-alanine cycle. Metabolism 21, 197207.Google Scholar
Fernindez-Lopez, J. A., Casado, J., Argiles, J. M. & Alemany, M. (1992). In the rat, intestinal lymph carries a significant amount of ingested glucose into the bloodstream. Archives Internationales de Physiologie, de Biochimie et de Biophysique 100, 231236.CrossRefGoogle Scholar
Gibson, J. A., Park, N. J., Sladen, G. E. & Dawson, A. M. (1976). The role of colon in urea metabolism in man. Clinical Science and Molecular Medicine 50, 5159.Google Scholar
Goldberg, A. & Guggenheim, K. (1962). The digestive release of amino acids and their concentrations in the portal plasma of rats after protein feeding. Biochemical Journal 83, 129135.CrossRefGoogle ScholarPubMed
Good, C. A., Kramer, M. & Somogyi, M. (1933). The determination of glycogen. Journal of Biologica1 Chemistry 100, 485494.CrossRefGoogle Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). L-lactate. In: Methods of Enzymatic Analysis, pp. 14641468, vol. 4 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Hartmann, F. & Plauth, M. (1989). Intestinal glutamine metabolism. Metabolism 38, 1824.CrossRefGoogle ScholarPubMed
Haussinger, D. (1987). Structural-functional organization of hepatic glutamine and ammonium metabolism. Biochemical Society Transactions 15, 369372.CrossRefGoogle ScholarPubMed
Hüssinger, D. (1989). Glutamine metabolism in the liver: overview and current concepts. Metabolism 38, 1417.CrossRefGoogle Scholar
Heding, L. G. (1972). Determination of total serum insulin (IRI) in insulin treated diabetic patients. Diabetologia 8, 260266.CrossRefGoogle ScholarPubMed
Iglesias, R., Villarroya, F. & Alemany, M. (1985). Comparison of the effects of different anticoagulants and sample handling procedures on rat insulin radioimmunoassay. Comparative Biochemistry and Physiology 82A, 863866.CrossRefGoogle Scholar
Ishishe, S., Pegram, B. L., Yamamoto, J., Kitamura, Y. & Frohlich, E. D. (1980). Reference sample microsphere method: cardiac output and blood flows in conscious rats. American Journal of Physiology 239, H433–H449.Google Scholar
Katz, J., Kuwajima, M., Foster, D. W. & McGarry, J. D. (1986). The glucose paradox: new perspectives on hepatic carbohydrate metabolism. Trends in Biochemical Sciences 11, 136140.CrossRefGoogle Scholar
Katz, M. L. & Bergman, E. N. (1969). Simultaneous measurement of hepatic and portal venous flow in the sheep and dog. American Journal of Physiology 216, 946952.CrossRefGoogle ScholarPubMed
Klein, B. & Standaert, F. (1976). Fluorometry of plasma amino nitrogen with the use of fluorescamine. Clinical Chemistry 22, 413416.CrossRefGoogle ScholarPubMed
Konarska, L. & Tomaszewski, L. (1975). Studies on L-arginase of the small intestine. II. Intestinal arginase in young and adult mammals and its role in maintaining urea body pool. Biochemical Medicine 14, 263273.CrossRefGoogle Scholar
Krebs, H. A. (1969). The metabolic fate of amino acids. In: Mammalian Protein Metabolism, pp. 125176, vol. 3 [Munro, H. N., editor]. New York: Academic Press.Google Scholar
Lang, C. H., Bagby, G. J., Brakerley, H. L., Johnson, J. L. & Spitzer, J. J. (1986). Plasma glucose concentration determines direct versus indirect liver glycogen synthesis. American Journal of Physiology 251, E584–E590.Google ScholarPubMed
Marliss, E. B., Aoki, T. T., Pozefsky, T., Most, A. S. & Cahill, G. F. (1971). Muscle and splanchnic glutamine and glutamate metabolism in postabsorptive and starved man. Journal of Clinical Investigation 50, 814817.CrossRefGoogle Scholar
Mortimore, G. E. & Poso, A. R. (1984). Lysosomal pathways in hepatic protein degradation: regulation role of amino acids. Federation Proceedings 43, 12891294.Google ScholarPubMed
Newgard, C. B., Hirsch, L. J., Foster, D. W. & McGarry, J. D. (1983). Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. Journal of Biological Chemistry 258, 80468052.CrossRefGoogle ScholarPubMed
Nicholls, T. J., Leese, H. J. & Bronk, J. R. (1983). Transport and metabolism of glucose by rat small intestine. Biochemical Journal 212, 183187.CrossRefGoogle ScholarPubMed
Ohnen, K. H., Wade, O. L. & Blainey, J. D. (1956). Amino acids in hepatic venous and arterial blood. Lancet ii, 10751076.CrossRefGoogle Scholar
Omstedt, P. T. & von der Decken, A. (1974). Dietary amino acids: effects of depletion and recovery on protein synthesis in vitro in rat skeletal muscle and liver. British Journal of Nutrition 31, 6776.CrossRefGoogle ScholarPubMed
Palou, A., Remesar, X., Arola, LI. & Alemany, M. (1981). Metabolic effects of short term food deprivation in the rat. Hormone and Metabolic Research 13, 326330.CrossRefGoogle ScholarPubMed
Pénicaud, L., Ferre, P., Kande, J., LeTurque, A., Issad, T. & Girard, J. (1987). Effect of anesthesia on glucose production and utilization in rats. American Journal of Physiology 252, E365–E369.Google ScholarPubMed
Rafecas, I., Domknech, T., Esteve, M., Remesar, X., Argiles, J. M. & Alemany, M. (1989). The thermogenic effect of a sucrose gavage on the fa/fa rat. Nutrition Research 9, 14071413.CrossRefGoogle Scholar
Rémésy, C., Demigne, C. & Fafournoux, P. (1986). Control of ammonia distribution ratio across the liver cell membrane and ureogenesis by intracellular pH. European Journal of Biochemistry 158, 283288.CrossRefGoogle Scholar
Schimassek, B. & Gerok, W. (1965). Control of the levels of free amino acids in plasma by the liver. Biochemische Zeitschrift 343, 407415.Google ScholarPubMed
Shepartz, B. (1973). Overall amino acid metabolism. In: Regulation of Amino Acid Metabolism in Mammals, pp. 1932. Philadelphia: W. B. Saunders.Google Scholar
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 6, 2427.CrossRefGoogle Scholar
Tuma, R. F., Vasthare, U. S., Irion, G. L. & Wiedeman, M. P. (1986). Considerations in use of microspheres for flow measurements in anaesthetized rats. American Journal of Physiology 250, HI37–HI43.Google Scholar
Van Leeuwen, P. A. H., Bogaard, E. J. M., Janssen, M. A., deBoer, J. E. G., Eyck, H. M. A. & Soeters, P. B. (1984). Ammonia production and glutamine metabolism in the small and large intestine of the rat and the influence of lactulose and neomycin. In: Advances in Hepatic Encephalopathy and Urea Cycle Diseases, pp. 164172 [Kleinberger, G., Ferenci, P., Riederer, P. and Thaler, H., editors]. Basel: Karger.Google Scholar
Weber, F. L., Eriedman, D. W. & Fresard, K. M. (1988). Ammonia production from intraluminal amino acids in canine jejunum. American Journal of Physiology 254, G264–G268.Google ScholarPubMed
Wiseman, G. (1968). Absorption of amino acids. In: Handbook of Physiology, pp. 12771307, vol. 3. Washington, DC: American Physiological Society.Google Scholar
Young, V. R. (1987). McCollum Award Lecture. Kinetics of human amino acid metabolism: nutritional implications and some lessons. American Journal of Clinical Nutrition 46, 709725.CrossRefGoogle ScholarPubMed