Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:00:23.717Z Has data issue: false hasContentIssue false

Intestinal absorption and liver uptake of medium-chain fatty acids in non-anaesthetized pigs

Published online by Cambridge University Press:  09 March 2007

E. Guillot
Affiliation:
Laboratoire de Biochimie, INRA-ENSA, 65 rue de St Brieuc, 35000 Rennes, France
P. Vaugelade
Affiliation:
Unith sur l'absorption intestinale et le métabolisme hépatique, NASA, INRA, 78350 Juuy en Josas., France
P. Lemarchali
Affiliation:
Laboratoire de Biochimie, INRA-ENSA, 65 rue de St Brieuc, 35000 Rennes, France
A. Re Rat
Affiliation:
Unith sur l'absorption intestinale et le métabolisme hépatique, NASA, INRA, 78350 Juuy en Josas., France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65 % of octanoic acid infused into the duodenum and 54 % of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.

Type
Absorption of Medium-Chain Fatty Acids
Copyright
Copyright © The Nutrition Society 1993

References

REFERENCES

Aw, T. Y. & Grigor, M. R. (1980). Digestion and absorption of milk triacylglycerols in 14-day-old suckling rats. Journal of Nutrition 110, 21332140CrossRefGoogle ScholarPubMed
Bernard, A. & Carlier, H. (1981). 2-3[3HH]decanoic acid absorption in mucosa and in portal blood in control and actidione-cycloheximide treated rats: biochemical and electron microscope radioautographic study. Biology of the Cell 42, 115124.Google Scholar
Bernard, A. & Carlier, H. (1984). Métabolisme intraentérocytaire et absorption par la voie sanguine des acides caprique et oléique chez le rat témoin et traité par l'actidione-cycloheximide (Metabolism in the enterocyte and absorption through the blood pathway of capric and oleic acids in control and actidone-cycloheximide-treated rats). Reproduction Nutrition Développement 24, 543556.Google Scholar
Bézard, J., Clément, G., Klepping, J. & Briet, S. (1966). Etude de la captation par le foie des acides gras à chaînes courtes et moyennes chez le chien (A study of the hepatic removal of short- and medium-chain fatty acids in the dog). Archives des Sciences Physiologiques 20, 169180.Google Scholar
Bézard, J. & Monneret-Boquillon, M. (1966). Captation par le foie en perfusion des acides gras à chaînes courtes et moyennes (Removal of short- and medium-chain fatty acids by the perfused liver). Archives des Sciences Physiologiques 20, 359378.Google Scholar
Bloom, B., Chaikoff, I. L. & Reinhardt, W. O. (1951). Intestinal lymph as pathway for transport of absorbed fatty acids of different chain lengths. American Journal of Physiology 166, 451455.CrossRefGoogle ScholarPubMed
Brindley, D. N. & Hübscher, G. (1966). The effect of chain length on the activation and subsequent incorporation of fatty acids into glycerides by the small intestinal mucosa. Biochimica et Biophysica Acta 125, 92105.Google Scholar
Clark, S. B., Brause, B. & Holt, P. R. (1969). Lipolysis and absorption of fat in the rat stomach. Gastroenterology 56, 214222.Google Scholar
Clark, S. B. & Holt, P. R. (1968). Rate-limiting steps in steady state intestinal absorption of trioctanoin – l-14C (effect of biliary and pancreatic flow diversion). Journal of Clinical Investigation 47, 612623.Google Scholar
Clément, G. & Bézard, J. (1961). Technique de dosage par chromatographie gaz-liquide d'un mélange d'acides gras, du butanoïque au docosanoïque (Analysis of a mixture of fatty acids ranging from butanoic to docosanoic acids by gas-liquid chromatography). Comptes Rendus de l'Academic des Sciences 253, 564566.Google Scholar
Cohen, M., Morgan, R. G. H. & Hofmann, A. F. (1971). Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60, 115.Google Scholar
Crozier, G.. Bois-Joyeux, B., Chanez, M., Girard, J. & Peret, J. (1987). Metabolic effects induced by long-term feeding of medium-chain triglycerides in the rat. Melaholism, Clinical and Experimental 36, 807814.Google Scholar
Dawson, A. M. & Isselbacher, K. J. (1960). The esterification of palmitate-l-14C by homogenates of intestinal mucosa. Journal of Clinical Investigation 39, 150160.Google Scholar
Egelrud, T., Olivecrona, T. & Helander, H. (1971). Studies on gastric absorption of lipids in the suckling rat. Scandinavian Journal of Gastroenterology 6, 329333.CrossRefGoogle Scholar
Entressangles, B., Paséro, L., Savary, P., Sarda, L. & Desnuelle, P. (1961). Influence de la nature des chaînes sur la vitesse de leur hydrolyse par la lipase pancréatique (Influence of the type of fatty-acyl chain upon hydrolysis by the pancreatic lipase). Bulletin de la Société de Chimie Biologique 43, 581591.Google Scholar
Entressangles, B., Savary, P., Constantin, M. J. & Desnuelle, P. (1964). Comportement in vitro et in vivo des chaînes courtes situtées en position interne dans les triglycerides (In vitro and in vivo behaviour of the short fatty-acyl chains situated at the internal position in triglycerides). Biochimica et Biophysica Acta 84, 140148.Google Scholar
Fernando-Warnakulasuriya, G. J. P., Eckerson, M. L., Clark, W. A. & Wells, M. A. (1983). Lipoprotein metabolism in the suckling rat: characterization of plasma and lymphatic lipoproteins. Journal of Lipid Research 24, 16261638.Google Scholar
Fernando-Warnakulasuriya, G. J. P., Staggers, J. E., Frost, S. C. & Wells, M. A. (1981). Studies on fat digestion, absorption, and transport in the suckling rat. I. Fatty acid composition of major lipid components. Journal of Lipid Research 22, 668674.Google Scholar
Ferré, P., Satabin, P., Decaux, J.-F., Escriva, F. & Girard, J. (1983). Development and regulation of ketogenesis in hepatocytes isolated from newborn rats. Biochemical Journal 214, 937942.Google Scholar
Galabert, C., Filliat, M., Chazalette, J.-P., Mendy, F. & Delhaye, N. (1975). Absorption intestinale des triglycérides à chaînes moyennes dans la fibrose kystique du pancréas (Intestinal absorption of medium-chain triglycerides in case of pancreatic cystic fibrosis). Annales de Pédiatrie 22, 745753.Google Scholar
Gargouri, Y., Pieroni, G., Rivi`re, C., Lowe, P. A., Saunière, J.-F., Sarda, L. & Verger, R. (1986). Importance of human gastric lipase for intestinal lipolysis: an in vitro study. Biochimica et Biophysica Acta 879, 419423.Google Scholar
Greenberger, N. J., Franks, J. J. & Isselbacher, K. J. (1965). Metabolism of l-14C octanoic and I -14C palmitic acid by rat intestinal slices. Proceedings of the Society for Experimental Biology and Medicine 120, 468472.Google Scholar
Greenberger, N. J., Rodgers, J. B. & Isselbacher, K. J. (1966). Absorption of medium and long chain triglycerides: factors influencing their hydrolysis and transport. Journal of Clinical Investigation 45, 217227.Google Scholar
Hara, A. & Radin, N. S. (1978). Lipid extraction of tissues with a low toxicity solvent. Analytical Biochemistry 90, 42426.Google Scholar
Hashim, S. A., Bergen, S. S., Krell, K. & Van Itallie, T. B. (1964). Intestinal absorption and mode of transport in portal vein of medium chain fatty acids. Journal of Clinical Investigation 43, 1238.Google Scholar
Hyun, S. A., Vahouni, G. V. & Treadwell, C. R. (1967). Portal absorption of fatty acids in lymph and portal vein cannulated rats. Biochimica et Biophysica Acta 137, 296305.CrossRefGoogle ScholarPubMed
McGarry, J. D. & Foster, D. W. (1971). The regulation of ketogenesis from octanoic acid. Journal of Biologica1 Chemistry 246, 11491159.CrossRefGoogle ScholarPubMed
Miller, R. G. (1966). Simultaneous Statistical Inference. New York: McGraw-Hill Book Company.Google Scholar
Ockner, R. K., Manning, J. A., Poppenhausen, R. B. & Ho, W. K. L. (1972). A binding protein for fatty acids cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177, 5658.CrossRefGoogle ScholarPubMed
Pégorier, J. P., Duée, P.-H., Clouet, P., Kohl, C., Herbin, C. &Girard, J. (1989). Octanoate metabolism in isolated hepatocytes and mitochondria from fetal, newborn and adult rabbit. European Journal of Biochemistry 184, 681686.Google Scholar
Pégorier, J. P., Duée, P.-H., Girard, J. & Peret, J. (1983). Metabolic fate of non-esterified fatty acids in isolated hepatocytes from newborn and young pigs. Biochemical Journal 212, 9397.CrossRefGoogle ScholarPubMed
Playoust, M. R. & Isselbacher, K. J. (1964). Studies on the intestinal absorption and intramucosal lipolysis of a medium chain triglyceride. Journal of Clinical Investigation 43, 878885.Google Scholar
Rérat, A., Simoes-Nunes, C., Mendy, F. & Roger, L. (1988). Changes in portal and arterial blood levels of amino acids and pancreatic hormones in conscious pigs after duodenal perfusion of mild milk hydrolysates or free amino acids. Nulrition Reports International 37, 179188.Google Scholar
Rérat, A., Vaugelade, P. & Villiers, P. A. (1980). A new method for measuring the absorption of nutrients in the pig: critical examination. In Current Concepts on Digestion and Absorption in Pigs. NIRD, HRI Technical Bulletin no. 3. pp, 177214 [Low, A. G. and Partridge, I. G. editors]. Ayr: Hannah Research Institute.Google Scholar
Serrero, G., Négrel, R. & Ailhaud, G. (1975). Characterization and partial purification of an intestinal lipase. Biochemical and Biophysical Research Communications 65, 8999.CrossRefGoogle ScholarPubMed
Simoes-Nunes, C., Rérat, A., Galibois, I., Vaugelade, P. & Vaissade, P. (1989). Hepatic and gut balances of glucose, amino-nitrogen, ammonia and urea in the pig after ingestion of casein or rapeseed proteins. Nutrition Reports Internutional 40, 901907.Google Scholar
Wolff, R. L. & Castera-Rossignol, A. F. M. (1987). Mise au point et évaluation d'une méthode d'extraction de la matière grasse de fromage de type Emmental (Development and assessment of a procedure for fat extraction from cheese of the Emmental type). Revue Françise des Corps Gras 34, 123132.Google Scholar