Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T16:36:04.106Z Has data issue: false hasContentIssue false

Interrelations of calcium, fluorine and vitamin D in bone metabolism

Published online by Cambridge University Press:  09 March 2007

Deborah Gaster
Affiliation:
Department of Nutrition, Hebrew University-Hadassah Medical School, Jerusalem, Israel
E. Havivi
Affiliation:
Department of Nutrition, Hebrew University-Hadassah Medical School, Jerusalem, Israel
K. Guggenheim
Affiliation:
Department of Nutrition, Hebrew University-Hadassah Medical School, Jerusalem, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The interrelationships between dietary calcium, fluorine and vitamin D were studied in young rats.

2. Rats maintained on a low-Ca diet gained less weight and had less ash in their bones. Their femurs incorporated more radioactive Ca than those of rats kept on a control diet. Supplementation of the diet with F slightly decreased growth and the content of bone ash without any effect on the content of Ca and phosphorus in the bone ash. The F supplement decreased uptake of radioactive Ca by bone. Addition of vitamin D to a low-Ca diet improved growth and, when added alone, increased uptake of radioactive Ca by bone without affecting the content in femurs of ash, Ca or P. Addition of F to a low-Ca diet supplemented with vitamin D diminished the uptake of radioactive Ca.

3. Decrease of bone ash in rats fed the low-Ca diet was accompanied by an increase in bone nitrogen. The bones of the unsupplemented rats contained less citric acid per unit of dry, fat-free mass. Addition of F decreased citric acid, whereas addition of vitamin D increased it.

4. The results are discussed and it is concluded that vitamin D added to a low-Ca diet does not exert a calcifying effect on bone, but rather increases Ca turnover. F, on the other hand, reduces the exchangeability of bone mineral.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Au, W. Y. W. & Bartter, F. C. (1966). Endocrinology 78, 1100.Google Scholar
Bauer, G. C. H., Carlsson, A. & Lindquist, B. (1956). Metabolism 5, 573.Google ScholarPubMed
Baron, D. N. & Bell, J. L. (1959). J. clin. Path. 12, 143.CrossRefGoogle Scholar
Bell, N. H. & Bartter, F. C. (1963). Trans. Ass. Am. Physns 76, 163.Google Scholar
Bicknell, F. & Prescott, F. (1946). The Vitamins in Medicine, 2nd ed., p. 645. London: William Heinemann Medical Books Ltd.Google Scholar
Bronner, F. (1964). In Mineral Metabolism. Vol. 2, p. 303. [Comar, C. L. and Bronner, F., editors.] London and New York: Academic Press Inc.Google Scholar
Campbell, J. R. & Douglas, T. A. (1965). Br. J. Nutr. 19, 339.CrossRefGoogle Scholar
Carlsson, A. (1951). Acta pharmacol., Kbh. 7, Suppl.1.CrossRefGoogle Scholar
Carlsson, A. (1952). Acta physiol. scand. 26, 212.CrossRefGoogle Scholar
Dam, H. & Sødergaard, E. (1964). In Nutrition, a Comprehensive Treatise. Vol. 2, p. 20. [Beaton, G. H. and McHenry, E. W., editors.] London and New York: Academic Press Inc.Google Scholar
Dixon, T. F. & Perkins, H. R. (1956). In The Biochemistry and Physiology of Bone, p. 581. [Bourne, G. H., editor.] London and New York: Academic Press Inc.Google Scholar
Dowdle, E. B., Schachter, D. & Schenker, H. (1960). Am. J. Physiol. 198, 269.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Greenberg, D. M. (1945). J. biol. Chem. 157, 99.CrossRefGoogle Scholar
Hall, R. J. (1963). Analyst, Lond. 88, 76.CrossRefGoogle Scholar
Harrison, M. & Fraser, R. (1960 a). J. Endocr. 21, 197.CrossRefGoogle Scholar
Harrison, M. & Fraser, R. (1960 b). J. Endocr. 21, 207.CrossRefGoogle Scholar
Hartles, R. L., Leaver, A. G. & Triffitt, J. T. (1963). Archs oral Biol. 8, 657.CrossRefGoogle Scholar
Hartles, R. L., Leaver, A. G. & Triffitt, J. T. (1964). Archs oral Biol. 9, 725.CrossRefGoogle Scholar
Lindquist, B. (1951). Acta paediat., Stockh. 40, Suppl. 83, p. 87.CrossRefGoogle Scholar
Menczel, J., Posner, A. S., Schraer, H., Pakis, G. & Likins, R. C. (1962). Proc. Soc. exp. Biol. Med. 110, 609.CrossRefGoogle Scholar
Menczel, J., Schraer, R., Pakis, G., Posner, A. S. & Likins, R. C. (1963). Proc. Soc. exp. Biol. Med. 112, 128.CrossRefGoogle Scholar
Moore, T., Impey, S. G., Martin, P. E. N. & Symonds, K. R. (1963). J. Nutr. 80, 162.CrossRefGoogle Scholar
Nichols, H. Jr, Schartum, S. & Vaes, G. M. (1963). Acta physiol. scand. 57, 51.CrossRefGoogle Scholar
Rich, C. & Ensinck, J. (1961). Nature, Lond. 191, 184.CrossRefGoogle Scholar
Taylor, T. G. (1953). Biochem. J. 54, 48.CrossRefGoogle Scholar
Underwood, E. J. (1962). Trace Elements in Human and Animal Nutrition, 2nd ed., p. 259. London and New York: Academic Press Inc.Google Scholar
US Pharmacopeia, XIII (1947), p. 721.Google Scholar
Zipkin, I., Posner, A. S. & Eanes, E. D. (1962). Biochim. biophys. Acta 59, 255.CrossRefGoogle Scholar
Zipkin, I., Schraer, R., Schraer, H. & Lee, W. A. (1963). Archs oral Biol. 8, 119.CrossRefGoogle Scholar